Same issue as post (Cuda - Multiple sums in each vector element). How do you perform 2D block striding in both x- and y-direction with varying summation limits. The 2D algorithm can be seen in the CPU and monolithic kernel. I included openmp for the CPU so as to get a more fair speedup result. If there is a way to increase the speed of the CPU function as well I would be happy to find out.
This version of the code takes a 2D array and flattens it to a 1D array. I still use the 2D thread dim3 indexing so I can index the double summations more intuitively.
(p.s. all credit to user Robert Crovella for the 1D striding code.) The code so far is,
#include <stdio.h>
#include <iostream>
#include <cuda.h>
#include <sys/time.h>
typedef double df;
#define USECPSEC 1000000ULL
#define BSX 1<<5
#define BSY 1<<5
#define N 100
#define M 100
const bool sync = true;
const bool nosync = false;
unsigned long long dtime_usec(unsigned long long start, bool use_sync = nosync){
if (use_sync == sync) cudaDeviceSynchronize();
timeval tv;
gettimeofday(&tv, 0);
return ((tv.tv_sec*USECPSEC)+tv.tv_usec)-start;
}
int divUp(int a, int b) {return (a + b - 1) / b;}
float cpu_sum(int n, int m, df *a, df *b, df *c) {
df q, r;
#pragma omp parallel for collapse(2)
for (int x = 0; x < n; x++) {
for (int y = 0; y < m; y++) {
q = 0.0f;
for (int i = 0; i <= x; i++) {
r = 0.0f;
for (int j = 0; j <= y; j++) {
r += a[i * n + j] * b[(x - i) * n + y - j];
}
for (int j = 1; j < m - y; j++) {
r += a[i * n + j] * b[(x - i) * n + y + j]
+ a[i * n + y + j] * b[(x - i) * n + j];
}
q += r;
}
for (int i = 1; i < n-x; i++) {
r = 0.0f;
for (int j = 0; j <= y; j++) {
r += a[i * n + j] * b[(x + i) * n + y - j]
+ a[(x + i) * n + j] * b[ i * n + y - j];
}
for (int j = 1; j < m - y; j++) {
r += a[i * n + j] * b[(x + i) * n + y + j]
+ a[(x + i) * n + y + j] * b[(x + i) * n + j]
+a[(x + i) * n + j] * b[i * n + y + j]
+ a[(x + i) * n + y + j] * b[i * n + j];
}
q += r;
}
c[x * N + y] = 0.25f*q;
}
}
return 0;
}
const int P2 = 5;
const int TPB = 1<<P2;
const unsigned row_mask = ~((0xFFFFFFFFU>>P2)<<P2);
__global__ void chebyprod_imp(int n, int m, df *a, df *b, df *c){
__shared__ df sdata[TPB*TPB];
int x = blockIdx.x;
int y = blockIdx.y;
int row_width_x = (((x)>(n-x))?(x):(n-x))+1;
int row_width_y = (((y)>(m-y))?(y):(m-y))+1;
int strides_x = (row_width_x>>P2) + ((row_width_x&row_mask)?1:0);
int strides_y = (row_width_y>>P2) + ((row_width_y&row_mask)?1:0);
int i = threadIdx.x;
df tmp_a;
df sum = 0.0f;
for (int s=0; s < strides_x; s++) { // block-stride x loop
int j = threadIdx.y;
for (int u=0; u < strides_y; u++) { // block-stride y loop
if (i < n && j < m) {tmp_a = a[i * n + j];}
if (i <= x) {
if (j <= y) {sum += tmp_a * b[(x - i) * n + y - j];}
if ((j > 0) && (j < (m-y))) {sum += tmp_a * b[(x - i) * n + y + j]
+ a[i * n + y + j] * b[(x - i) * n + j];}
}
if ((i > 0) && (i < (n-x))) {
if (j <= y) {sum += tmp_a * b[(x + i) * n + y - j]
+ a[(x + i) * n + j] * b[ i * n + y - j];}
if ((j > 0) && (j < (m-y))) {sum += tmp_a * b[(x + i) * n + y + j]
+ a[(x + i) * n + y + j] * b[(x + i) * n + j]
+ a[(x + i) * n + j] * b[i * n + y + j]
+ a[(x + i) * n + y + j] * b[i * n + j];}
}
j += TPB;
}
i += TPB;
}
sdata[threadIdx.x * TPB + threadIdx.y] = sum;
for (int s = TPB>>1; s > 0; s>>=1) { // sweep reduction in x
for (int u = TPB>>1; u > 0; u>>=1) { // sweep reduction in x
__syncthreads();
if (threadIdx.x < s && threadIdx.y < u) {
sdata[threadIdx.x * TPB + threadIdx.y] += sdata[(threadIdx.x + s) * TPB + threadIdx.y + u];
}
}
}
if (!threadIdx.x && !threadIdx.y) c[x * n + y] = 0.25f*sdata[0];
}
__global__ void chebyprod(int n, int m, df *a, df *b, df *c){
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
df q, r;
if (x < n && y < m) {
q = 0.0f;
for (int i = 0; i <= x; i++) {
r = 0.0f;
for (int j = 0; j <= y; j++) {
r += a[i * n + j] * b[(x - i) * n + y - j];
}
for (int j = 1; j < m - y; j++) {
r += a[i * n + j] * b[(x - i) * n + y + j]
+ a[i * n + y + j] * b[(x - i) * n + j];
}
q += r;
}
for (int i = 1; i < n-x; i++) {
r = 0.0f;
for (int j = 0; j <= y; j++) {
r += a[i * n + j] * b[(x + i) * n + y - j]
+ a[(x + i) * n + j] * b[ i * n + y - j];
}
for (int j = 1; j < m - y; j++) {
r += a[i * n + j] * b[(x + i) * n + y + j]
+ a[(x + i) * n + y + j] * b[(x + i) * n + j]
+a[(x + i) * n + j] * b[i * n + y + j]
+ a[(x + i) * n + y + j] * b[i * n + j];
}
q += r;
}
c[x * N + y] = 0.25f*q;
}
}
int main(void){
int size = N*M*sizeof(df);
df *a, *b, *c, *cc, *ci, *d_a, *d_b, *d_c, *d_ci;
a = (df*)malloc(size);
b = (df*)malloc(size);
c = (df*)malloc(size);
cc = (df*)malloc(size);
ci = (df*)malloc(size);
cudaMalloc(&d_a, size);
cudaMalloc(&d_b, size);
cudaMalloc(&d_c, size);
cudaMalloc(&d_ci, size);
#pragma omp parallel for collapse (2)
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
a[i * M + j] = 0.1f;
b[i * M + j] = 0.2f;
}
}
unsigned long long dt = dtime_usec(0);
// Perform chebyprod on N elements
cpu_sum(N, M, a, b, cc);
dt = dtime_usec(dt,sync);
printf("Time taken 2D CPU: %fs\n", dt/(float)USECPSEC);
df dtc = dt/(float)USECPSEC;
std::cout << "Vector cc: [ ";
for (int k = 0; k < 10; ++k)
std::cout << cc[k] << " ";
std::cout <<"]\n";
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);
dim3 dimBlock(BSX, BSY);
dim3 dimGrid(divUp(N, BSX), divUp(M, BSY));
//std::cout << "dimBlock: " << dimBlock << "\n dimGrid: " << dimGrid << "\n";
dt = dtime_usec(0);
// Perform chebyprod on N elements
chebyprod<<< dimBlock, dimGrid >>>(N, M, d_a, d_b, d_c);
dt = dtime_usec(dt,sync);
printf("Time taken 2D monolithic kernel: %fs\n", dt/(float)USECPSEC);
printf("Speedup: %fs\n", dtc/(dt/(float)USECPSEC));
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);
std::cout << "Vector c: [ ";
for (int k = 0; k < 10; ++k)
std::cout << c[k] << " ";
std::cout <<"]\n";
dt = dtime_usec(0);
// Perform chebyprod on N elements
chebyprod_imp<<< dimBlock, dimGrid >>>(N, M, d_a, d_b, d_ci);
dt = dtime_usec(dt,sync);
printf("Time taken 2D stride kernel: %fs\n", dt/(float)USECPSEC);
cudaMemcpy(ci, d_ci, size, cudaMemcpyDeviceToHost);
std::cout << "Vector ci: [ ";
for (int k = 0; k < 10; ++k)
std::cout << ci[k] << " ";
std::cout <<"]\n";
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);
cudaFree(d_ci);
free(a);
free(b);
free(c);
free(cc);
free(ci);
}