I am trying to minimize the function || Cx - d ||_2^2 with constraints Ax <= b. Some information about their sizes is as such:
* C is a (138, 22) matrix
* d is a (138,) vector
* A is a (138, 22) matrix
* b is a (138, ) vector of zeros
So I have 138 equation and 22 free variables that I'd like to optimize. I am currently coding this in Python and am using the transpose C.T*C to form a square matrix. The entire code looks like this
C = matrix(np.matmul(w, b).astype('double'))
b = matrix(np.matmul(w, np.log(dwi)).astype('double').reshape(-1))
P = C.T * C
q = -C.T * b
G = matrix(-constraints)
h = matrix(np.zeros(G.size[0]))
dt = np.array(solvers.qp(P, q, G, h, dims)['x']).reshape(-1)
where np.matmul(w, b)
is C
and np.matmul(w, np.log(dwi))
is d
. Variables P
and q
are C and b multiplied by the transpose C.T to form a square multiplier matrix and constant vector, respectively. This works perfectly and I can find a solution.
I'd like to know whether this my approach makes mathematical sense. From my limited knowledge of linear algebra I know that a square matrix produces a unique solution, but is there is a way to run the same this to produce an overdetermined solution? I tried this but solver.qp said input Q needs to be a square matrix.
We can also parse in a dims
argument to solver.qp, which I tried, but received the error:
use of function valued P, G, A requires a user-provided kktsolver.
How do I correctly setup dims
?
Thanks a lot for any help. I'll try to clarify any questions as best as I can.