I am trying out something where I required to freeze some selected weights. Take this example
from keras.models import Sequential
from keras.layers import Dense,Input
model = Sequential()
model.add(Dense(4, input_shape=(4,),activation='relu'))
model.add(Dense(3,name="hidden",activation='relu'))
model.add(Dense(2,activation='sigmoid'))
model.compile(loss='mse', optimizer='adam')
print(model.layers[1].get_weights()[0])
This will print the input to hidden layer weights.
# Weights input x hidden
# Freeze 2Rx3C and 4Rx2C
# 2Rx3C=0.14362943; 4Rx2C=-0.23868048
array([[-0.05557871, 0.10941017, -0.59108734],
[ 0.37056673, 0.2968588 , 0.14362943],
[-0.05471832, -0.21425706, 0.6455065 ],
[-0.7883829 , -0.23868048, -0.517396 ]], dtype=float32)
From this weight matrix I want to freeze values in (2nd Row, 3rd Column)
and (4th Row, 2nd Column)
, that is, 0.14362943 and -0.23868048 respectively. I dont want to update these values on backprop. How can I freeze these selected weights?