Let us first ignore the three steps here. Imagine that we can only use steps of one and two. Then that means that for a given number n. We know that we can solve this with n steps of 1 (one solution), or n-2 steps of 1 and one step of 2 (n-1 solutions); or with n-4 steps of 1 and two steps of 2, which has n-2×n-3/2 solutions, and so on.
The number of ways to do that is related to the Fibonacci sequence. It is clear that the number of ways to construct 0
is one: just the empty list []
. It is furthermore clear that the number of ways to construct 1
is one as well: a list [1]
. Now we can proof that the number of ways Wn to construct n is the sum of the ways Wn-1 to construct n-1 plus the number of ways Wn-2 to construct n-2. The proof is that we can add a one at the end for each way to construct n-1, and we can add 2 at the end to construct n-2. There are no other options, since otherwise we would introduce duplicates.
The number of ways Wn is thus the same as the Fibonacci number Fn+1 of n+1. We can thus implement a Fibonacci function with caching like:
cache = [0, 1, 1, 2]
def fib(n):
for i in range(len(cache), n+1):
cache.append(cache[i-2] + cache[i-1])
return cache[n]
So now how can we fix this for a given step of three? We can here use a divide and conquer method. We know that if we use a step of three, it means that we have:
1 2 1 … 1 2 3 2 1 2 2 1 2 … 1
\____ ____/ \_______ _____/
v v
sum is m sum is n-m-3
So we can iterate over m, and each time multiply the number of ways to construct the left part (fib(m+1)
) and the right part (fib(n-m-3+1)
) we here can range with m from 0
to n-3
(both inclusive):
def count_ways(n):
total = 0
for m in range(0, n-2):
total += fib(m+1) * fib(n-m-2)
return total + fib(n+1)
or more compact:
def count_ways(n):
return fib(n+1) + sum(fib(m+1) * fib(n-m-2) for m in range(0, n-2))
This gives us:
>>> count_ways(0) # ()
1
>>> count_ways(1) # (1)
1
>>> count_ways(2) # (2) (1 1)
2
>>> count_ways(3) # (3) (2 1) (1 2) (1 1 1)
4
>>> count_ways(4) # (3 1) (1 3) (2 2) (2 1 1) (1 2 1) (1 1 2) (1 1 1 1)
7