I have data from various csv files I am trying to put together. I put it all in one Dataframe. How can I combine the data into the corresponding A, B, C columns and include a header for each row?
for data_base in data:
base_data.append(data_base['A'])
base_data.append(data_base[' B'])
base_data.append(data_base[' C'] )
# np.append(base_data, np.nan)
df_name = pd.DataFrame(name_join)
df_data = pd.DataFrame(base_data)
trp = np.transpose(df_data)
Actual:
A B C A B C A B C
0.7283 0.743 0.01 0.7283 0.7512 0.02 0.7283 0.7456 0.02
0.5165 0.488 0.03 0.5165 0.4756 0.04 0.5165 0.4707 0.05
0.5087 0.4781 0.03 0.5087 0.4611 0.05 0.5087 0.4467 0.06
0.4598 0.4834 0.02 0.4598 0.4938 0.03 0.4598 0.4793 0.02
0.4883 0.5235 0.04 0.4883 0.5173 0.03 0.4883 0.5278 0.04
0.5993 0.6229 0.02 0.5993 0.6223 0.02 0.5993 0.6258 0.03
0.5351 0.5983 0.06 0.5351 0.6029 0.07 0.5351 0.613 0.08
0.6105 0.6314 0.02 0.6105 0.6434 0.03 0.6105 0.6361 0.03
0.5946 0.6495 0.05 0.5946 0.6452 0.05 0.5946 0.6463 0.05
0.7335 0.7506 0.02 0.7335 0.7559 0.02 0.7335 0.7497 0.02
Expected:
A B C
Cow 0.7283 0.743 0.01
0.5165 0.488 0.03
0.5087 0.4781 0.03
0.4598 0.4834 0.02
0.4883 0.5235 0.04
0.5993 0.6229 0.02
0.5351 0.5983 0.06
0.6105 0.6314 0.02
0.5946 0.6495 0.05
0.7335 0.7506 0.02
Cat 0.7283 0.7512 0.02
0.5165 0.4756 0.04
0.5087 0.4611 0.05
0.4598 0.4938 0.03
0.4883 0.5173 0.03
0.5993 0.6223 0.02
0.5351 0.6029 0.07
0.6105 0.6434 0.03
0.5946 0.6452 0.05
0.7335 0.7559 0.02
Dog 0.7283 0.7456 0.02
0.5165 0.4707 0.05
0.5087 0.4467 0.06
0.4598 0.4793 0.02
0.4883 0.5278 0.04
0.5993 0.6258 0.03
0.5351 0.613 0.08
0.6105 0.6361 0.03
0.5946 0.6463 0.05
0.7335 0.7497 0.02