I'm trying to perform exact GP regression using the TF2.0 eager mode, based on the original graph based example from https://colab.research.google.com/github/tensorflow/probability/blob/master/tensorflow_probability/examples/jupyter_notebooks/Gaussian_Process_Regression_In_TFP.ipynb
amplitude = (
np.finfo(np.float64).tiny +
tf.nn.softplus(tf.Variable(initial_value=1., name='amplitude', dtype=np.float64))
)
length_scale = (
np.finfo(np.float64).tiny +
tf.nn.softplus(tf.Variable(initial_value=1., name='length_scale', dtype=np.float64))
)
observation_noise_variance = (
np.finfo(np.float64).tiny +
tf.nn.softplus(tf.Variable(initial_value=1e-6,
name='observation_noise_variance',
dtype=np.float64))
)
kernel = tfk.ExponentiatedQuadratic(amplitude, length_scale)
gp = tfd.GaussianProcess(
kernel=kernel,
index_points=tf.expand_dims(x, 1),
observation_noise_variance=observation_noise_variance
)
neg_log_likelihood = lambda: -gp.log_prob(y)
optimizer = tf.optimizers.Adam(learning_rate=.01)
num_iters = 1000
lls_ = np.zeros(num_iters, np.float64)
for i in range(num_iters):
lls_[i] = neg_log_likelihood()
optimizer.minimize(neg_log_likelihood, var_list=[amplitude, length_scale, observation_noise_variance])
However optimization fails with:
'tensorflow.python.framework.ops.EagerTensor' object has no attribute '_in_graph_mode'
And if I move the amplitude, length_scale and observation_noise_variance each to tf.Variable, like:
amplitude = tf.Variable(initial_value=1., name='amplitude', dtype=np.float64)
amplitude_ = (
np.finfo(np.float64).tiny +
tf.nn.softplus(amplitude)
)
Optimization fails with:
ValueError: No gradients provided for any variable: ['amplitude:0', 'length_scale:0', 'observation_noise_variance:0'].
What am I doing wrong?