You can solve this problem by using dynamic programming.
Let's define dp[i][j]: the minimum cost for solving this problem when you only have the first i elements of the array and you want to split (partition) them into j subarrays.
dp[i][j] = cost of the last subarray plus cost of the partitioning of the other part of the given array into j-1 subarrays
This is my solution which runs in O(m * n^2):
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1000 + 10;
const int MAXM = 1000 + 10;
const long long INF = 1e18 + 10;
int n, m, a[MAXN];
long long dp[MAXN][MAXM];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i++) {
cin >> a[i];
}
// start of initialization
for (int i = 0; i <= n; i++)
for (int j = 0; j <= n; j++)
dp[i][j] = INF;
dp[0][0] = 0;
// end of initialization
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
int last_subarray_xor = 0, last_subarray_length = 0;
for (int k = i; k >= 1; k--) {
last_subarray_xor ^= a[k];
last_subarray_length = i - k + 1;
dp[i][j] = min(dp[i][j], dp[k - 1][j - 1] + (long long)last_subarray_xor * (long long)last_subarray_length);
}
}
}
cout << dp[n][m] << endl;
return 0;
}
Sample input:
6 3
11 11 11 24 26 100
Sample output:
119
One of the most simple classic dynamic programming problems is called "0-1 Knapsack" that's available on Wikipedia.