I am currently running a regression that explains the probability of only one company bidding in a tender by several corruption indicators. My current regression is:
glm(Single_Bid ~ Announcement_NoCall + Country_NL + Extr_Adv + Extr_Dec + Legal_NoCall + Procedure_Open + Type_Regionaal + Year2012 + Year2013 + Year2014 + Year2015 + Year2017 + Year2018 + Year2019, data = Dataset, family = binomial('logit) )
and the regression I used for the robustness check is:
Rgr_robust<-glmrob(SingleBid ~ ExtrAdv + ExtrDec + Year2012 + Year2013 + Year2014 + Year2015 + Year2016 + Year2017 + Year2018 + Year2019 + Open + AnnouncNoCall + Local + LegalNoCall + CountryNL, data=Dataset_ALL, family=binomial('logit'), method="BY")
I want to check the robustness of my model. As this is a logistic regression, I read I need to use the glmrob method. However when i do this, using the method "BY" (as I read this is appropriate for binary logistic regression?), I get the following warning messages:
1: In (grad.BY %*% xistart) * xistart : Recycling array of length 1 in array-vector arithmetic is deprecated. Use c() or as.vector() instead.
2: In (grad.BY %*% xistart) * xistart : Recycling array of length 1 in array-vector arithmetic is deprecated. Use c() or as.vector() instead.
3: In (grad.BY %*% xistart) * xistart : Recycling array of length 1 in array-vector arithmetic is deprecated. Use c() or as.vector() instead.
4: In (grad.BY %*% xistart) * xistart : Recycling array of length 1 in array-vector arithmetic is deprecated. Use c() or as.vector() instead.
These are my estimation results of my binary logistic regression:
> ESTIMATE STD. ERROR Z VALUE PR(>|Z|)
>(INTERCEPT -1.39717 0.37549 -3.721 0.000199 ***
>EXTRADV -0.13305 0.09656 -1.378 0.168242
>EXTRDEC 0.22597 0.09678 2.335 0.019545 *
>COUNTRYNL -1.02834 0.25186 -4.083 4.45e-05 ***
>YEAR2012 -1.09127 0.34454 -3.167 0.001538 **
>YEAR2013 -0.86818 0.28519 -3.044 0.002333 **
>YEAR2014 -0.92484 0.28996 -3.190 0.001425 **
>YEAR2015 -1.06884 0.29242 -3.655 0.000257 ***
>YEAR2016 -0.48629 0.29214 -1.665 0.095990 .
>YEAR2017 -0.69089 0.31622 -2.185 0.028900 *
>YEAR2018 -0.12943 0.28781 -0.450 0.652928
>YEAR2019 0.11843 0.38106 0.311 0.755960
>RESTRICTED -0.71202 0.18031 -3.949 7.85e-05 ***
>ANNOUNCNOCALL -0.98108 0.73439 -1.336 0.181576
>LOCAL -0.22801 0.09274 -2.459 0.013951 *
>LEGALNOCALL 0.34881 0.18666 1.869 0.061670