I have been trying to implementing heap data structures for use in my research work. As part of that, I am trying to implement increase-key operations for min-heaps. I know that min-heaps generally support decrease-key. I was able to write the increase-key operation for a binary min-heap, wherein, I exchange increased key with the least child recursively.
In the case of the Fibonacci heap, In this reference, they say that the Fibonacci heap also supports an increase-key operation. But, I couldn't find anything about it in the original paper on Fibonacci Heaps, nor could I find anything in CLRS (Introduction to Algorithms by Cormen).
Can someone tell me how I can go about implementing the increase-key operation efficiently and also without disturbing the data structure's amortized bounds for all the other operations?