I'm training autoencoders on 2D images using convolutional layers and would like to put fully connected layers on top of encoder part for classification. My autoencoder is defined as follows (just a simple one for illustration):
def encoder(input_img):
conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
conv1 = BatchNormalization()(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(pool1)
conv2 = BatchNormalization()(conv2)
return conv2
def decoder(conv2):
conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv2)
conv3 = BatchNormalization()(conv3)
up1 = UpSampling2D((2,2))(conv3)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(up1)
return decoded
autoencoder = Model(input_img, decoder(encoder(input_img)))
My input images are of size (64,80,1). Now when stacking fully connected layers on top of the encoder I'm doing the following:
def fc(enco):
flat = Flatten()(enco)
den = Dense(128, activation='relu')(flat)
out = Dense(num_classes, activation='softmax')(den)
return out
encode = encoder(input_img)
full_model = Model(input_img,fc(encode))
for l1,l2 in zip(full_model.layers[:19],autoencoder.layers[0:19]):
l1.set_weights(l2.get_weights())
For only one autoencoder this works but the problem now is that I have 2 autoencoders trained on sets of images all of size (64, 80, 1).
For every label I have as input two images of size (64, 80, 1) and one label (0 or 1). I need to feed image 1 into the first autoencoder and image 2 into the second autoencoder. But how can I combine both autoencoders in the full_model
in above code?
Another problem is also the input to the fit()
method. Until now with only one autoencoder the input consisted just of numpy arrays of images (e.g. (1000,64,80,1)) but with two autoencoders I would have two sets of images as input. How can I feed this into the fit()
method so that the first autoencoder consumes the first set of images and the second autoencoder the second set?