Q : Or will the compute units skip those false branches?
The ecosystem of CPU / GPU code-execution is rather complex.
The layer of hardware is where the code-paths (translated into "machine"-code) operate. On this laye, the SIMD-Computing-Units cannot and will not skip anything they are ordered to SIMD-process by the hardware-scheduler (next layer).
The layer of hardware-specific scheduler (GPUs have typically right two-modes: a WARP-mode scheduling for coherent, non-diverging code-paths efficiently scheduled in SIMD-blocks and greedy-mode scheduling). From this layer, the SIMD-Computing-Units are loaded to work on SIMD-operated blocks-of-work, so any first divergence detected on the lower layer (above) breaks the execution, flags the SIMD-hardware scheduler about blocks, deferred to be executed later and all known SIMD-specific block-device-optimised scheduling is well-known to start to grow less-efficient and less-efficient, due to each such run-time divergence.
The layer of { OpenCL | Vulkan API }-mediated device-specific programming decides a lot about the ease or comfort of human-side programming of the wide range of the target-devices, all without knowing about its respective internal constraints, about (compiler decided) preferred "machine"-code computing problem re-formulation and device-specific tricks and scheduling. A bit oversimplified battlefield picture has made for years human-users just stay "in front" of the mediated asynchronous work-units ( kernel's ) HOST-to-DEVICE scheduling queues and wait until we receive back the DEVICE-to-HOST delivered results back, doing some prior-H2D/posterior-D2H memory transfers, if allowed and needed.
The HOST-side DEVICE-kernel-code "scheduling" directives are rather imperative and help the mediated-device-specific programming reflect user-side preferences, yet leave user blind from seeing all internal decisions ( assembly-level reviews are indeed only for hard-core, DEVICE-specific, GPU-engineering Aces and hard to modify, if willing to )
All that said, "adaptive" run-time values' based decisions to move a particular "work-unit" back-to-the-HOST-CPU, rather than finalising it all in DEVICE-GPU, are not, to the best of my knowledge, taking place on the bottom of this complex computing ecosystem hierarchy ( afaik, it would be exhaustively expensive to try to do so ).