I am trying to using lightgbm to classify a 4-classes problem. But the 4-classes are imbalanced and nearly 2000:1:1:1.
In lightgbm, the params 'is_unbalance' and scale_pos_weight are just for binary classification.
params = {
'objective':'multiclassova',
'num_class':4,
'is_unbalance':True,
'metric': 'multi_logloss',
'max_depth':2,
'learning_rate':0.15,
'feature_fraction':0.8,
'bagging_fraction':0.8,
'bagging_freq':4,
'reg_alpha':5,
'reg_lambda':3,
'cat_smooth':0,
'num_iterations':53,
}
lgb_train = lgb.Dataset(X_train,Y_train,
categorical_feature=category_feature)
gbm = lgb.train(params,lgb_train)