What is the fastest way to implementat the following logic:
def xor(data, key):
l = len(key)
buff = ""
for i in range(0, len(data)):
buff += chr(ord(data[i]) ^ ord(key[i % l]))
return buff
In my case key is 20-byte sha1 digest, and data is some binary data between 20 bytes and few (1, 2, 3) megabytes long
UPDATE:
OK guys. Here's a 3.5 times faster implementation, which splits data and key by chunks of 4, 2 or 1 bytes (in my case, most of the time it's 4-byte long integer):
def xor(data, key):
index = len(data) % 4
size = (4, 1, 2, 1)[index]
type = ('L', 'B', 'H', 'B')[index]
key_len = len(key)/size
data_len = len(data)/size
key_fmt = "<" + str(key_len) + type;
data_fmt = "<" + str(data_len) + type;
key_list = struct.unpack(key_fmt, key)
data_list = struct.unpack(data_fmt, data)
result = []
for i in range(data_len):
result.append (key_list[i % key_len] ^ data_list[i])
return struct.pack(data_fmt, *result)
Uses a lot of memory, but in my case it's not a big deal.
Any ideas how to increase the speed few more times? :-)
FINAL UPDATE:
OK, ok... numpy did the job. That's just blazing fast:
def xor(data, key):
import numpy, math
# key multiplication in order to match the data length
key = (key*int(math.ceil(float(len(data))/float(len(key)))))[:len(data)]
# Select the type size in bytes
for i in (8,4,2,1):
if not len(data) % i: break
if i == 8: dt = numpy.dtype('<Q8');
elif i == 4: dt = numpy.dtype('<L4');
elif i == 2: dt = numpy.dtype('<H2');
else: dt = numpy.dtype('B');
return numpy.bitwise_xor(numpy.fromstring(key, dtype=dt), numpy.fromstring(data, dtype=dt)).tostring()
Initial implementation needed 8min 50sec to process a gigabyte, the second - around 2min 30sec and the last one just.... 0min 10sec.
Thanks to anyone who contributed ideas and code. You're great guys!