I am attempting to learn skorch by translating a simple pytorch model that predicts the 2 digits contained in a set of MNIST multi digit pictures. These pictures contain 2 overlapping digits which are the output lables (y
). I am getting the following error:
ValueError: Stratified CV requires explicitely passing a suitable y
I followed the "MNIST with SciKit-Learn and skorch" notebook AND applied the multiple output fixes outlined in "Multiple return values from forward" by creating a custom get_loss
function.
Data dimensions are:
- X:
(40000, 1, 4, 28)
- y:
(40000, 2)
Code:
class Flatten(nn.Module):
"""A custom layer that views an input as 1D."""
def forward(self, input):
return input.view(input.size(0), -1)
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3)
self.pool1 = nn.MaxPool2d((2, 2))
self.conv2 = nn.Conv2d(32, 64, 3)
self.pool2 = nn.MaxPool2d((2, 2))
self.flatten = Flatten()
self.fc1 = nn.Linear(2880, 64)
self.drop1 = nn.Dropout(p=0.5)
self.fc2 = nn.Linear(64, 10)
self.fc3 = nn.Linear(64, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool1(x)
x = F.relu(self.conv2(x))
x = self.pool2(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.drop1(x)
out_first_digit = self.fc2(x)
out_second_digit = self.fc3(x)
return out_first_digit, out_second_digit
torch.manual_seed(0)
class CNN_net(NeuralNetClassifier):
def get_loss(self, y_pred, y_true, *args, **kwargs):
loss1 = F.cross_entropy(y_pred[0], y_true[:,0])
loss2 = F.cross_entropy(y_pred[1], y_true[:,1])
return 0.5 * (loss1 + loss2)
net = CNN_net(
CNN,
max_epochs=5,
lr=0.1,
device=device,
)
net.fit(X_train, y_train);
- Do I need to modify the format of y?
- Do I need to construct additional custom functions (predict)?
- Any other suggestions?