If I understand correctly, you want to access a nested dictionary structure if...
if I am given a List that is specific to the key
So, here you have a sample dictionary and key that you want to access
d = {'a': {'a': 0, 'b': 1},
'b': {'a': {'a': 2}, 'b': 3}}
key = ('b', 'a', 'a')
The lazy approach
This is fast if you know Python dictionaries already, no need to learn other stuff!
>>> value = d
>>> for level in key:
... value = temp[level]
>>> value
2
NestedDict from the ndicts package
If you pip install ndicts
then you get the same "lazy approach" implementation in a nicer interface.
>>> from ndicts import NestedDict
>>> nd = NestedDict(d)
>>> nd[key]
2
>>> nd["b", "a", "a"]
2
This option is fast because you can't really write less code than nd[key]
to get what you want.
Pandas dataframes
This is the solution that will give you performance. Lookups in dataframes should be quick, especially if you have a sorted index.
In this case we have hierarchical data with multiple levels, so I will create a MultiIndex first. I will use the NestedDict for ease, but anything else to flatten the dictionary will do.
>>> keys = list(nd.keys())
>>> values = list(nd.values())
>>> from pandas import DataFrame, MultiIndex
>>> index = MultiIndex.from_tuples(keys)
>>> df = DataFrame(values, index=index, columns="Data").sort_index()
>>> df
Data
a a NaN 0
b NaN 1
b a a 2
b NaN 3
Use the loc method to get a row.
>>> nd.loc[key]
Data 2
Name: (b, a, a), dtype: int64