I have a class with a model inside:
class MyNetwork:
def __init__(self):
# layer initializations
self.optimizer = tf.train.RMSPropOptimizer(0.001)
self.loss = tf.losses.sigmoid_cross_entropy
def build(self):
# layer connections
self.model = keras.Model(inputs=[inputs], outputs=[outputs]
return self.model
@tf.function
def train_step(self, images, labels):
with tf.GradientTape() as tape:
predictions = self.model(images)
loss = self.loss(labels, predictions)
gradients = tape.gradient(loss, self.model.trainable_variables)
self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
return loss, predictions
I use the following to build the model:
network = MyNetwork()
model = network.build()
When training with the following lines:
model.compile(tf.train.RMSPropOptimizer(0.001), loss=tf.losses.sigmoid_cross_entropy, metrics=['accuracy']
model.fit(X, y, epochs=10)
The model trains without any issues.
But in a separate run, using the following code:
for i in range(10):
print("Epoch ", (i))
loss, pred = D.train_step(X, y)
print(loss)
The loss gets stuck after a a few epochs. The calculated accuracy also stops at 0.5.
Does anyone know how a Keras model can be trained using GradientTape
?