I would like to create a summary with the major points of the original document. To do this, I made sentences embeddings with a Universal Sentence Encoder(https://tfhub.dev/google/universal-sentence-encoder/2). After, I would like apply clustering on my vectors.
I've tried with the library sklearn
:
import numpy as np
from sklearn.cluster import KMeans
n_clusters = np.ceil(len(encoded)**0.5)
kmeans = KMeans(n_clusters=n_clusters)
kmeans = kmeans.fit(encoded)
But I get an error message:
'numpy.float64' object cannot be interpreted as an integer'