I am working on a classification problem in a project. The specificity of my problem is that I have to use two different type of data to manage it. My classes are Car, Pedestrian, Truck and Cyclist. My dataset is composed of :
-Images coming from the Camera : they are RGB image. Here is an example :
- Images obtain by projecting Lidar Point Cloud (just 3D points) into 2D camera plane and encoding pixels using Depth & Reflectance. Here are examples :
I already manage to use both modalities in order to perform the classification task by using the Concatenate function of the keras API.
But what I would like to do is to use a more powerful CNN like VGG. I used pre-trained model and freeze all layers except the last 4. I read the grayscale image as RGB because the VGG16 pre-trained model need 3 channels input. Here is my code :
from keras.applications import VGG16
#Load the VGG model
#Camera Model
vgg_conv_C = VGG16(weights='imagenet', include_top=False, input_shape=(227, 227, 3))
#Depth Model
vgg_conv_D = VGG16(weights='imagenet', include_top=False, input_shape= (227, 227, 3))
for layer in vgg_conv_D.layers[:-4]:
layer.trainable = False
for layer in vgg_conv_C.layers[:-4]:
layer.trainable = False
mergedModel = Concatenate()([vgg_conv_C.output,vgg_conv_D.output])
mergedModel = Dense(units = 1024)(mergedModel)
mergedModel = BatchNormalization()(mergedModel)
mergedModel = Activation('relu')(mergedModel)
mergedModel = Dropout(0.5)(mergedModel)
mergedModel = Dense(units = 4,activation = 'softmax')(mergedModel)
fused_model = Model([vgg_conv_C.input, vgg_conv_D.input], mergedModel) )
The last line give the following error :
ValueError: The name "block1_conv1" is used 2 times in the model. All
layer names should be unique.
Did someone know how to handle this? To be simple, I just want to use VGG16 on both type of images, then just get the feature vectors for each modality, then Concatenate them and add fully connected layers at top to predict the image's class. It works with no-pre trained models. Can provide the code if needed