I'm using Keras on Python to train a CNN autoencoder. In the fit()
method I have to provide validation_split
or validation_data
. First, I would like to use 80% of my data as training data and 20% as validation data (random split). As soon as I have found the best parameters, I would like to train the autoencoder on all the data, i.e. no more using a validation set.
Is it possible to train a Keras model without using a validation set, i.e. using all data to train?
Moreover, the pixels in my images are all in the range [0, -0.04]. Is it still recommended to normalize the values of all pixels in all images in the training and validation set to the range [0,1] or to [-1,1] or to standardize it (zero mean, unit variance)? If so, which method is prefered? By the way, my images are actually 2D heat maps (one color channel).