If you can accept not an optimal, but "close to optimal" solution, I can suggest you to use "random traveling" algorithm. Idea of this algorithm - do not BFS/DFS search through entire combination tree, but search just random DFS-subtrees.
For example, you have vertices [A-Z], and you start point within [A]. Try 10000 attempts for each path (total 32 prefix), started from [A-B-...], [A-C-...] and so on, where [...] is randomly selected full-depth path through your graph, according your rules. Keep cost of appropriate paths within array, where cost is sum of costs from each prefix. Because of you use equal attempts to all "start prefixes", sum of minimal prefix will show you best step from [A]. Of course, this is not guarantee for optimal, but this is high probability to be so.
For example, sum of 10,000 attempts withing path [A-K] is lowest. Next step - accept first step [A-K], and again repeat algorithm, until you found the solution.