I'm trying to create a custom transformation using the Featuretools package where I can input a parameter and change the behaviour of the the function
For example for the following custom log transformation class I wish to add a base parameter so I can do log transformations of features with different bases:
class Log(TransformPrimitive):
"""Computes the logarithm for a numeric column."""
name = 'log'
input_types = [Numeric]
return_type = Numeric
def get_function(self):
return np.log
How would I go about implementing such a primitive and moreover how would it be implemented using the featuretools.dfs() function?