I have a 1d array (voltage of EEG) for 26 EEG channels, I also have the 3d coordinates of the EEG channels.
x = np.array([ 84.06, 83.74, 41.69, 51.87, 57.01, 51.84,
41.16, 21.02, 24.63, 21.16, -16.52, -13.25, -11.28,
-12.8 , -16.65, -48.48, -48.77, -48.35, -75.17, -80.11,
-82.23, -80.13, -75.17, -114.52, -117.79, -114.68])
y = np.array([-26.81, 29.41, -66.99, -48.05, 0.9 , 50.38,
68.71, -58.83, 0.57, 60.29, -83.36, -65.57, 0.23, 66.5 ,
-65.51, -0.42, 65.03, -71.46, -55.07, -0.87, 53.51, 71.1 ,
-28.98, -1.41, 26.89])
z = np.array([-10.56, -10.04, -15.96, 39.87, 66.36, 41.33, -15.31,
54.82, 87.63, 55.58, -12.65, 64.98, 99.81, 65.11, -11.79,
68.57, 98.37, 68.57, -3.7 , 59.44, 82.43, 59.4 , -3.69,
9.67, 15.84, 9.45])
data = [ 884007.64101968, 997175.31684776, 853520.29922077,
1146032.72839618, 1280654.00515894, 1136783.42927035,
781802.02852187, 1165581.44354253, 1474539.74412991,
1074018.46853295, 578909.21492644, 1067652.55432892,
1508963.49572301, 1012764.69535714, 533385.60827991,
1058268.82537597, 1392128.01175867, 1043996.55697014,
675548.3896822 , 1022400.8910867 , 1360502.28709052,
1108773.44991746, 780841.92929488, 986799.48807626,
947189.96382125, 994734.32179115])
Now I would like to project the 1d array (data) onto a 3d interpolated surface, based on the channel-locations (x,y and z).
My problem is that I don't know how to shape the 1d vector into a 3d array reflecting both the positions and the values of the points, and then interpolate them to make a more interpretable plot. Also, I could also use some help in plotting it.
I am using > python 3, for plotting I mostly use matplotlib.
2d interpolation works (to eventually make a 2d topoplot) using scipy.interpolate.griddata.
N=300
xy_center = [np.min(x)+((np.max(x)-np.min(x))/2),np.min(y)+((np.max(y)-
np.min(y))/2)] # center of the plot
radius = ((np.max(x)-np.min(x))/2) # radius
z = data
xi = numpy.linspace(np.min(x), np.max(x), N)
yi = numpy.linspace(np.min(y), np.max(y), N)
zi = scipy.interpolate.griddata((x, y), z, (xi[None,:], yi[:,None]),
method='cubic')
Trying to do a similar 3d interpolation the data.shape and the coordinates don't add up.
d = data
xi = numpy.linspace(np.min(x), np.max(x), N)
yi = numpy.linspace(np.min(y), np.max(y), N)
zi = numpy.linspace(np.min(z), np.max(z), N)
int = scipy.interpolate.griddata((x, y, z), z, (xi[None,:],
yi[:,None],zi[:, None]), method='cubic')
I am aware that choosing the min/max values on the axis here is also not the correct thing to do, but I am not sure what else to do.
I did figure out how to make a 3d scatterplot of the x,y,z coordinates of the channels.
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x, y, z)
plt.show()
I am sorry about not being very precise, but I am completely in the dark....