Trying to comprehend the answer of @keep_learning I walked through this code step by step:
Inductive nostutter {X:Type} : list X -> Prop :=
| ns_nil : nostutter []
| ns_one : forall (x : X), nostutter [x]
| ns_cons: forall (x : X) (h : X) (t : list X), nostutter (h::t) -> x <> h -> nostutter (x::h::t).
Example test_nostutter_4: not (nostutter [3;1;1;4]).
Proof.
intro.
inversion_clear H.
inversion_clear H0.
unfold not in H2.
(* We are here *)
specialize (H2 eq_refl).
apply H2.
Qed.
Here is what we have before excuting specialize
H1 : 3 <> 1
H : nostutter [1; 4]
H2 : 1 = 1 -> False
============================
False
Here is eq Prop whose constructor eq_refl
is used in specialize:
Inductive eq (A:Type) (x:A) : A -> Prop :=
eq_refl : x = x :>A
where "x = y :> A" := (@eq A x y) : type_scope.
I can't explain, how this command works:
specialize (H2 eq_refl).
I read about specialize in reference manual, but the explanation there is too broad. As far as I understand it sees that "1 = 1" expression in H2 satisfies eq_refl
constructor and therefore eq proposition is True. Then it simplifies the expression:
True -> False => False
And we get
H1 : 3 <> 1
H : nostutter [1; 4]
H2 : False
============================
False
Can somebody provide me a minimal example with explanation of what is specialize
doing, so I could freely use it?
Update
Trying to imitate how specialize works using apply I did the following:
Example specialize {A B: Type} (H: A -> B) (a: A): B.
Proof.
apply H in a.
This gives:
A : Type
B : Type
H : A -> B
a : B
============================
B
Almost the same as specialize
, only different hypothesis name.
In test_nostutter_4 theorem I tried this and it worked:
remember (@eq_refl nat 1) as Heq.
apply H2 in Heq as H3.
It gives us:
H1 : 3 <> 1
H : nostutter [1; 4]
H2 : 1 = 1 -> False
Heq : 1 = 1
H3 : False
HeqHeq : Heq = eq_refl
============================
False
This one was more complex, we had to introduce a new hypothesis Heq. But we got what we need - H3 at the end.
Does specialize internally use something like remember? Or is it possible to solve it with apply but without remember?