I have a data frame with up to 5 measurements (x) and their corresponding time:
df = structure(list(x1 = c(92.9595722286402, 54.2085219673818,
46.3227062573019,
NA, 65.1501442134141, 49.736451235317), time1 = c(43.2715277777778,
336.625, 483.975694444444, NA, 988.10625, 510.072916666667),
x2 = c(82.8368681534474, 53.7981639701784, 12.9993531230419,
NA, 64.5678816290574, 55.331442940348), time2 = c(47.8166666666667,
732, 506.747222222222, NA, 1455.25486111111, 958.976388888889
), x3 = c(83.5433119686794, 65.723072881366, 19.0147593408309,
NA, 65.1989838202356, 36.7000828457705), time3 = c(86.5888888888889,
1069.02083333333, 510.275, NA, 1644.21527777778, 1154.95694444444
), x4 = c(NA, 66.008102917677, 40.6243513885846, NA, 62.1694420909955,
29.0078249523063), time4 = c(NA, 1379.22986111111, 520.726388888889,
NA, 2057.20833333333, 1179.86805555556), x5 = c(NA, 61.0047472617535,
45.324715258421, NA, 59.862110645527, 45.883161439362), time5 = c(NA,
1825.33055555556, 523.163888888889, NA, 3352.26944444444,
1364.99513888889)), class = c("tbl_df", "tbl", "data.frame"
), row.names = c(NA, -6L))
"NA" means that the person (row) didn't have a measurement.
I would like to calculate the difference between the last existing measurement and the first one.
So for the first one it would be x3 minus x1 (6.4), for the second it would be -6.8 and so on.
I tried something like this, which didnt work:
df$diff = apply(df %>% select(., contains("x")), 1, function(x) head(x,
na.rm = T) - tail(x, na.rm=T))
Any suggestions? Also, is apply/rowwise the most efficient way, or is there a vectorized function to do that?