Say I have this simple snippet of code. I will group, aggregate, and merge the dataframe:
Using Pandas:
Data
df = pd.DataFrame({'A': [1, 1, 2, 2],
'B': [1, 2, 3, 4],
'C': [0.3, 0.2, 1.2, -0.5]})
df:
A B C
0 1 1 0.3
1 1 2 0.2
2 2 3 1.2
3 2 4 -0.5
Group and Aggregate
df_result = df.groupby('A').agg('min')
df_result.columns = ['groupby_A(min_'+x+')' for x in df_result.columns]
df_result:
groupby_A(min_B) groupby_A(min_C)
A
1 1 0.2
2 3 -0.5
Merge
df_new = pd.merge(df,df_result,on='A')
df_new
df_new:
A B C groupby_A(min_B) groupby_A(min_C)
0 1 1 0.3 1 0.2
1 1 2 0.2 1 0.2
2 2 3 1.2 3 -0.5
3 2 4 -0.5 3 -0.5
An Attempt using featuretools:
# ---- Import the Module ----
import featuretools as ft
# ---- Make the Entity Set (the set of all tables) ----
es = ft.EntitySet()
# ---- Make the Entity (the table) ----
es.entity_from_dataframe(entity_id = 'df',
dataframe = df)
# ---- Do the Deep Feature Synthesis (group, aggregate, and merge the features) ----
feature_matrix, feature_names = ft.dfs(entityset = es,
target_entity = 'df',
trans_primitives = ['cum_min'])
feature_matrix
feature_matrix:
A B C CUM_MIN(A) CUM_MIN(B) CUM_MIN(C)
index
0 1 1 0.3 1 1 0.3
1 1 2 0.2 1 1 0.2
2 2 3 1.2 1 1 0.2
3 2 4 -0.5 1 1 -0.5
How does the operation with Pandas translate into featuretools (preferably without adding another table)?
My attempt with featuretools does not give the right output, but I believe the process that I used is somewhat correct.