2

So I made my graph using networkx library which is a unipartite graph. When I put the labels it doesn't seem right, its getting mixed up. There are some words which has more length than the others and its out of the boundary of the nodes. Can my graph be adjusted so everything look clear and understandable?

And also I want the node to be like a dot and the labels appearing over the nodes not inside the nodes.

Like this

pic

Graph I made..

pic

Here is the code..

import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
from networkx.algorithms import community
from networkx.algorithms import bipartite


G1 = nx.read_edgelist("abcd.txt")
print(nx.info(G1))
c = bipartite.color(G1)
nx.set_node_attributes(G1, c, 'bipartite')
type1  = {n for n, d in G1.nodes(data=True) if d['bipartite']==0}
type2  = {n for n, d in G1.nodes(data=True) if d['bipartite']==1}
G = bipartite.projected_graph(G1, type1)
type2g = bipartite.projected_graph(G1, type2)


pos = nx.spring_layout(G,k=0.30,iterations=50)

nx.is_bipartite(G1)
#average clustering
nx.average_clustering(G1)

#Diameter
print("Diameter:",nx.diameter(G1))

options = {
    'node_color': 'purple',
    'node_size': 40,
    'line_color': 'yellow',
    'linewidths': 0,
    'width': 0.3,
}

#degeree plotting
def plot_degree_distribution(wiki):
    degs = {}
    for n in wiki.nodes():
        deg = wiki.degree(n)

        if deg not in degs:
            degs[deg] = 0

        degs[deg] += 1
    items = sorted(degs.items())

    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.plot([k for (k, v) in items], [v for (k, v) in items])
    ax.set_xscale('log')
    ax.set_yscale('log')
    plt.title("Degree Distribution")
    fig.savefig("degree_distribution.png")


# plot_degree_distribution(G)
d = []  # create a set
for n in G.nodes():
    d.append(G.degree(n))

ec = []  # create a set
for e in G.edges():
    if (G.degree(e[0]) > G.degree(e[1])):
        ec.append(G.degree(e[0]))
    else:
        ec.append(G.degree(e[1]))

pos = nx.spring_layout(G,k=1.5, iterations=200)

factor = 25  # to change the size of nodes with respect to their degree


nx.draw_networkx(G, pos,
        edge_color=ec, edge_cmap=plt.cm.plasma,  # edge color
        node_color=d, cmap=plt.cm.plasma,  # node color
        node_size=[x * factor for x in d])  # node sizse
plt.savefig ("simple_graph.png")
fig = plt.gcf()
fig.set_size_inches((10,10))
plt.show()
Hai Vu
  • 37,849
  • 11
  • 66
  • 93

1 Answers1

1

Changing the spring layout to a circular layout will help you to get a better label visualization.

cgraph=nx.gnp_random_graph(15,p=0.5)
labels={}
for k in range(15):
    labels[k]='long named node '+str(k)

circPos=nx.circular_layout(cgraph)
nx.draw_networkx_labels(cgraph,pos=circPos,labels=labels) 
nx.draw(cgraph,pos=circPos)

enter image description here

Also if the edge label is difficult to visualize, you can change the position of the labels by changing the layout position as follows.

pos_attrs = {}
for node, coords in circPos.items():
    pos_attrs[node] = (coords[0]+0.1*(-1)*np.sign(coords[0]), coords[1]+0.1*(-1)*np.sign(coords[1]))
nx.draw_networkx_labels(cgraph,pos=circPos,labels=labels) 
nx.draw(cgraph,pos=pos_attrs)

enter image description here

Another great way to deal with labels on circular layouts is presented here: NetworkX node labels relative position

Hope it helps

TavoGLC
  • 889
  • 11
  • 14