I am using this https://github.com/tensorflow/models/tree/master/official/resnet official tensorflow implementation of resnet to train a binary classifier on my own dataset. I modified a little bit of the input_fn in imagenet_main.py to do my own image loading and preprocessing. But after many times of parameter tuning, I can't make my model train properly. I can only find a set of parameters that let training accuracy increase reaching 100%, while the validation accuracy stay around 50% forever. The implementation uses piece-wise learning-rate. I tried initial learning rate from 0.1 to 1e-5 and weight decay from 1e-2 to 1e-5, and no convergence on validation set was found.
A suspicious observation is that during training, the l2 loss decrease slowly and steady while cross-entropy is very reluctant to decrease, staying around 0.69.
Any idea about what can I try further ?
Regarding my dataset and image preprocessing, The training data set is around 100K images. The validation set is around 10K. I just resize each image to 224*224 while keeping aspect ration and subtract 127 on each channel and divide them by 255.