I have a multi-label problem and with some research, I was able to use Label powerset in conjunction with ML algorithms. Now I want to use the Label powerset with neural network and as per the official website I can use Label powerset. But I am not able to understand how to modify my existing code to be able to use Label Powerset.
I want to know how can we pass epoch or batch_size or any other parameter passed in the fit function of the model.
Since I have a multi-label problem I have used MultiLabelBinarizer of sklearn so my each target row looks like this [1,0,0,1,0,0,0,0,0,0,0,0].
and lastly, if someone could explain to me what is KERAS_PARAMS and Keras() in the below line:
def create_model_multiclass(input_dim, output_dim):
# create model
model = Sequential()
model.add(Dense(8, input_dim=input_dim, activation='relu'))
model.add(Dense(output_dim, activation='softmax'))
# Compile model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
clf = LabelPowerset(classifier=Keras(create_model_multiclass, True, KERAS_PARAMS), require_dense=[True,True])
clf.fit(X_train,y_train)
y_pred = clf.predict(X_test)
Below is my existing neural network code
cnn_model = Sequential()
cnn_model.add(Dropout(0.5))
cnn_model.add(Conv1D(25,7,activation='relu'))
cnn_model.add(MaxPool1D(2))
cnn_model.add(Dropout(0.2))
cnn_model.add(Conv1D(25,7,activation='relu'))
cnn_model.add(MaxPool1D(2))
cnn_model.add(Flatten())
cnn_model.add(Dense(25,activation='relu'))
cnn_model.add(Dense(12,activation='softmax'))
cnn_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc'])
history = cnn_model.fit(X_train, y_train, validation_data=(X_test,y_test), batch_size=32, epochs=180,verbose=1)
plot_history(history)
predictions = cnn_model.predict(X_test)
I want my output row to look like this only [1,0,0,1,0,0,0,0,0,0,0,0] as later I will use my MultiLabelBinarizer for the inverse transform of this.