2

Consider the following simplistic example of fixed effects regressions:

# Load packages
packs <- list("texreg", "plm", "lmtest")
lapply(packs, require, character.only = T)

# Load mtcars data set
d <- mtcars

# Run fixed effects regressions
fe_results <- lapply(c("hp", "drat", "qsec", "vs"), function(x) {
  plm_eq <- paste0("mpg ~ wt + ", x)
  plm_outp <- plm(plm_eq, index = "cyl", data = d, model = "within")
  return(plm_outp)
})

# Print via texreg
texreg(fe_results, stars = c(0.01, 0.05, 0.1), include.rsquared = F, include.rmse = F, include.adjrsq = T)

The last line produces this table:

\begin{table}
\begin{center}
\begin{tabular}{l c c c c }
\hline
 & Model 1 & Model 2 & Model 3 & Model 4 \\
\hline
wt         & $-3.18^{***}$ & $-3.24^{***}$ & $-3.89^{***}$ & $-3.30^{***}$ \\
           & $(0.72)$      & $(0.83)$      & $(0.91)$      & $(0.78)$      \\
hp         & $-0.02^{*}$   &               &               &               \\
           & $(0.01)$      &               &               &               \\
drat       &               & $-0.14$       &               &               \\
           &               & $(1.32)$      &               &               \\
qsec       &               &               & $0.50$        &               \\
           &               &               & $(0.38)$      &               \\
vs         &               &               &               & $0.86$        \\
           &               &               &               & $(1.64)$      \\
\hline
Adj. R$^2$ & 0.39          & 0.30          & 0.34          & 0.31          \\
Num. obs.  & 32            & 32            & 32            & 32            \\
\hline
\multicolumn{5}{l}{\scriptsize{$^{***}p<0.01$, $^{**}p<0.05$, $^*p<0.1$}}
\end{tabular}
\caption{Statistical models}
\label{table:coefficients}
\end{center}
\end{table}

However, I would like to change the standard errors into heteroskedasticity-robust standard errors. Therefore, I add coeftest to the given function:

fe_results <- lapply(c("hp", "drat", "qsec", "vs"), function(x) {
  plm_eq <- paste0("mpg ~ wt + ", x)
  plm_outp <- plm(plm_eq, index = "cyl", data = d, model = "within")
  plm_outp <- coeftest(plm_outp, vcov = vcovHC(plm_outp, type = "HC1"))
  return(plm_outp)
})

Unfortunately, coeftest has the undesired effect of dropping information on the Adj. R$^2$ and the Num. obs., which then also removes it from the texreg output:

\begin{table}
\begin{center}
\begin{tabular}{l c c c c }
\hline
 & Model 1 & Model 2 & Model 3 & Model 4 \\
\hline
wt   & $-3.18^{***}$ & $-3.24^{***}$ & $-3.89^{***}$ & $-3.30^{***}$ \\
     & $(0.95)$      & $(0.83)$      & $(1.29)$      & $(1.08)$      \\
hp   & $-0.02^{*}$   &               &               &               \\
     & $(0.01)$      &               &               &               \\
drat &               & $-0.14$       &               &               \\
     &               & $(0.72)$      &               &               \\
qsec &               &               & $0.50^{***}$  &               \\
     &               &               & $(0.10)$      &               \\
vs   &               &               &               & $0.86$        \\
     &               &               &               & $(0.63)$      \\
\hline
\multicolumn{5}{l}{\scriptsize{$^{***}p<0.01$, $^{**}p<0.05$, $^*p<0.1$}}
\end{tabular}
\caption{Statistical models}
\label{table:coefficients}
\end{center}
\end{table}

One solution that found circumvents dropping Adj. R$^2$ and Num. obs. via:

fe_results <- lapply(c("hp", "drat", "qsec", "vs"), function(x) {
  plm_eq <- paste0("mpg ~ wt + ", x)
  plm_outp <- plm(plm_eq, index = "cyl", data = d, model = "within")
  plm_outp_s <- summary(plm_outp)
  plm_outp_s$coefficients <- unclass(coeftest(plm_outp, vcov = vcovHC(plm_outp, type = "HC1")))
  return(plm_outp_s)
})

The disadvantage is that the returned output is now in summary.plm format and cannot be printed by texreg anymore (Error in (function (classes, fdef, mtable): unable to find an inherited method for function ‘extract’ for signature ‘"summary.plm"’). How do I fix this? How do I print regression output incl. Adj. R$^2$, Num. obs. and heteroskedasticity robust standard errors using texreg?

Furthermore, I would like to add an "intercept" in a Stata-like manner. I figured that the solution might rely on within_intercept() but am uncertain of how to use it in a way that it gets included into the texreg output.

I tried to keep this example as simple and coherent as possible and am looking forward to any comments and suggestions.

Chr
  • 1,017
  • 1
  • 8
  • 29

0 Answers0