I have a dataframe that I read from the XLSX file. Every column name looks like this: CODE___DESCRIPTION so for example A1___Some funky column here. It is easier to use the codes as colnames but I want to use description when needed so it must be stored in the dataframe. This is why I am using sjlabelled package later on.
Make yourself some random data and save it as some_data.xlsx.
library(dplyr) #to play with tibbles
library(stringi) #to play with strings
library(writexl) #name speaks for itself
tibble(col1 = sample(c("a", "b", "c", NA, "N/A"), 50, replace = T),
col2 = sample(c("d", "e", "f", NA, "N/A"), 50, replace = T),
col3 = sample(c("g", "h", "i", NA, "N/A"), 50, replace = T),
col4 = sample(c("j", "k", "l", NA, "N/A"), 50, replace = T)) %>%
setNames(stri_c("A", 1:4, "___", stri_rand_strings(4, 10))) %>%
write_xlsx(path = "some_data.xlsx", col_names = T, format_headers = F)
I've created simple function to prepare my data the way I want it.
library(sjlabelled) #to play with labelled data
label_it <- function(data = NULL, split = "___"){
#This basically makes an array of two columns (of codes and descriptions respectively)
k.n <- data %>%
names() %>%
stri_split_fixed(pattern = split, simplify = T)
data%>%
set_label(k.n[,2]) %>% #set description as each column's label
setNames(k.n[,1]) #set code as each column's name
}
First I read the data from XLSX file. Then I label it.
library(readxl) #name speaks for itself again
data <- read_xlsx("some_data.xlsx", na = c("", "N/A")) %>%
label_it()
Now each of my dataframe's column is character vector (in fact it's a structure) with two attributes:
- label being description part
- names being the original dataframe column name (CODE___DESCRIPTION style) and is not to be mistaken for output of names(data) which would be the codes part
Let's say I would like to change first and third column to factor.
To do this I have tried two things:
data[,1] <- factor(data[,1], levels = c("c", "a", "b"))
data[,3] <- factor(data[,3], levels = c("h", "g", "i"))
this changes all of those two columns values to NA_integer_.
data <- data %>%
mutate(A1 = factor(A1, levels = c("c", "a", "b")),
A3 = factor(A3, levels = c("h", "g", "i")))
this changes character vectors to factors as intended, but it drops both column attributes (label and names) which I need to be preserved.
I also tried quite a lot of functions from sjlabelled, labelled and haven packages. Nothing worked as I intended. Finally, I have found a solution, but it isn't perfect and I would love to find an easier way of doing this.
The solution is to lose those attributes but then regain ('copy' in fact) them.
data <- data %>%
mutate(A1 = factor(A1, levels = c("c", "a", "b")),
A3 = factor(A3, levels = c("h", "g", "i"))) %>%
copy_labels(data)
copy_labels
is function from sjlabelled package which is used when labels are lost due to e.g. data subsetting as in this example.
P.S. I would love to add r-sjlabelled and r-labelled tags because those packages are considered in this problem but am under 1500 reputation required to do this.