I am trying to group events based on their time of occurrence. To achieve this, I simply calculate a diff over the timestamps and want to essentially start a new group if the diff is larger than a certain value. I would have tried like the code below. However, this is not working since the dialog variable is not available during the mutate it is created by.
library(tidyverse)
df <- data.frame(time = c(1,2,3,4,5,510,511,512,513), id = c(1,2,3,4,5,6,7,8,9))
> df
time id
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 510 6
7 511 7
8 512 8
9 513 9
df <- df %>%
mutate(t_diff = c(NA, diff(time))) %>%
# This generates an error as dialog is not available as a variable at this point
mutate(dialog = ifelse(is.na(t_diff), id, ifelse(t_diff >= 500, id, lag(dialog, 1))))
# This is the desired result
> df
time id t_diff dialog
1 1 1 NA 1
2 2 2 1 1
3 3 3 1 1
4 4 4 1 1
5 5 5 1 1
6 510 6 505 6
7 511 7 1 6
8 512 8 1 6
9 513 9 1 6
In words, I want to add a column that points to the first element of each group. Thereby, the groups are distinguished at points at which the diff to the previous element is larger than 500.
Unfortunately, I have not found a clever workaround to achieve this in an efficient way using dplyr. Obviously, iterating over the data.frame with a loop would work, but would be very inefficient.
Is there a way to achieve this in dplyr?