I hope I don't have misunderstood the Thrift concept, but what I see from (example) questions like this, this framework is composed by different modular layers that can be enabled or disabled.
I'm mostly interesed in the "IDL part" of Thrift, so that I can create a common interface between my C++ code and an external Javascript application. I would like to call C++ functions using JS, with Binary data transmission, and I've already used the compiler for this.
But both my C++ (the server) and JS (client) application already exchange data using a C++ Webserver with Websockets support, it is not provided by Thrift.
So I was thinking to setup the following items:
In JS (already done):
- TWebSocketTransport to send data to my "Websocket server" (with host ws://xxx.xxx.xxx.xxx)
- TBinaryProtocol to encapsulate the data (using this JS implementation)
- The compiled Thrift JS library with the correspondent C++ functions to call (done with the JS compiler)
In C++ (partial):
- TBinaryProtocol to encode/decode the data
- A TProcessor with handler to get the data from the client and process it
For now, the client is already able to sent requests to my websocket server, I see receiving them in binary form and I just need Thrift to:
- Decode the input
- Call the appropriate C++ function
- Encode the output
My webserver will send the response to the client. So no "Thrift server" is needed here. I see there is the TProcessor->process() function, I'm trying to use it when I receive the binary data but it needs an in/out TProtocol. No problem here... but in order to create the TBinaryProtocol I also need a TTransport! If no Thrift server is expected... what Transport should I use?
I tried to set TTransport to NULL in TBinaryProtocol constructor, but once I use it it gives nullptr exception.
Code is something like:
Init:
boost::shared_ptr<MySDKServiceHandler> handler(new MySDKServiceHandler());
thriftCommandProcessor = boost::shared_ptr<TProcessor>(new MySDKServiceProcessor(handler));
thriftInputProtocol = boost::shared_ptr<TBinaryProtocol>(new TBinaryProtocol(TTransport???));
thriftOutputProtocol = boost::shared_ptr<TBinaryProtocol>(new TBinaryProtocol(TTransport???));
When data arrives:
this->thriftInputProtocol->writeBinary(input); // exception here
this->thriftCommandProcessor->process(this->thriftInputProtocol, this->thriftOutputProtocol, NULL);
this->thriftOutputProtocol->readBinary(output);