The reason your code doesn't compile is explained by the compiler error. The containing type is a generic type definition, and a generic type constructed from such a type is not considered to be the same type.
I have a few questions:
- Why must the
Rational
type be generic? A rational number is defined as a number that can be expressed as the quotient / fraction of two integers (where the denominator is not 0
). Why not make the type non-generic and simply use int
throughout? Or do you intend that the type be used for other integral types such as long
and BigInteger
? In that case, consider using something like Aliostad's suggestion if you want some code-sharing mechanism.
- Why do you want the product of two rational numbers to be the equal to the sum of their numerators over the sum of their denominators? That doesn't make sense to me.
In any case, you appear to want to be able to 'generically' add two instances of an 'addable' type. Unfortunately, there currently isn't any way to express a 'has a suitable addition operator' constraint in C#.
Method #1: One workaround for this in C# 4 is to use the dynamic
type to give you the desired "virtual operator" semantics.
public static Racional<T> operator *(Racional<T> a, Racional<T> b)
{
var nominatorSum = (dynamic)a.Nominator + b.Nominator;
var denominatorSum = (dynamic)a.Denominator + b.Denominator;
return new Racional<T>(nominatorSum, denominatorSum);
}
The operator will throw if the type doesn't have a suitable addition operator.
Method #2: Another (more efficient) way is to use expression-trees.
First, create and cache a delegate that can perform the addition by compiling the appropriate expression:
private readonly static Func<T, T, T> Adder;
static Racional()
{
var firstOperand = Expression.Parameter(typeof(T), "x");
var secondOperand = Expression.Parameter(typeof(T), "y");
var body = Expression.Add(firstOperand, secondOperand);
Adder = Expression.Lambda<Func<T, T, T>>
(body, firstOperand, secondOperand).Compile();
}
(The static constructor will throw if the type doesn't have a suitable addition operator.)
Then employ it in the operator:
public static Racional<T> operator *(Racional<T> a, Racional<T> b)
{
var nominatorSum = Adder(a.Nominator, b.Nominator);
var denominatorSum = Adder(a.Denominator, b.Denominator);
return new Racional<T>(nominatorSum, denominatorSum);
}