Approach #1
Simply broadcast a
to b'
s shape with np.broadcast_to
and then mask it with b
-
In [15]: np.broadcast_to(a,b.shape)[b]
Out[15]: array([0, 2, 2, 3])
Approach #2
Another would be getting all the indices and mod those by the size of a
, which would also be the size of each 2D
block in b
and then indexing into flattened a
-
a.ravel()[np.flatnonzero(b)%a.size]
Approach #3
On the same lines as App#2, but keeping the 2D
format and using non-zero indices along the last two axes of b
-
_,r,c = np.nonzero(b)
out = a[r,c]
Timings on large arrays (given sample shapes scaled up by 100x) -
In [50]: np.random.seed(0)
...: a = np.random.rand(200,200)
...: b = np.random.rand(200,200,200)>0.5
In [51]: %timeit np.broadcast_to(a,b.shape)[b]
45.5 ms ± 381 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [52]: %timeit a.ravel()[np.flatnonzero(b)%a.size]
94.6 ms ± 1.64 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [53]: %%timeit
...: _,r,c = np.nonzero(b)
...: out = a[r,c]
128 ms ± 1.46 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)