I want to take some polynomial f and remove all of it's cyclotomic factors, and then look at the resulting polynomial (say g). I'm aware of polcyclofactors
and the current code I have tried is:
c(f)=polcyclofactors(f)
p(f)=prod(i=1,#c(f),c(f)[i])
g(f)=f/p(f)
The issue I have is that polcyclofactors
doesn't take into account multiplicity of the cyclotomic factors. For example:
f=3*x^4 + 8*x^3 + 6*x^2 - 1
g(f)
= 3*x^3 + 5*x^2 + x - 1
But
factor(f)
=
[ x + 1 3]
[3*x - 1 1]
Is there any way to be able to nicely include multiple cyclotomic factors of f to divide by? Or will I have to look at factorising f and try and removing cyclotomic factors that way?