I have 3 dataframes:
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],\
'B': ['B0', 'B1', 'B2', 'B3'],\
'C': ['C0', 'C1', 'C2', 'C3'],\
'D': ['D0', 'D1', 'D2', 'D3']},\
index=[0,1,2,3])
df2 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],\
'E': ['E0', 'E1', 'E2', 'E3']},\
index=[0,1,2,3])
df3 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],\
'F': ['F0', 'F1', 'F2', 'F3']},\
index=[0,1,2,3])
I want to combine them together to get the following results:
A B C D E F
0 A0 B0 C0 D0 E0 F0
1 A1 B1 C1 D1 E1 F1
2 A2 B2 C2 D2 E2 F2
3 A3 B3 C3 D3 E3 F3
When I try to combine them, I keep getting:
A B C D A E A F
0 A0 B0 C0 D0 A0 E0 A0 F0
1 A1 B1 C1 D1 A1 E1 A1 F1
2 A2 B2 C2 D2 A2 E2 A2 F2
3 A3 B3 C3 D3 A3 E3 A3 F3
The common column (A) is duplicated once for each dataframe used in the concat call. I have tried various combinations on:
df4 = pd.concat([df1, df2, df3], axis=1, sort=False)
Some variations have been disastrous while some keep giving the undesired result. Any suggestions would be much appreciated. Thanks.