In machine learning, more features or dimensions can decrease a model’s accuracy since there is more data that needs to be generalized and this is known as the curse of dimensionality.
Dimensionality reduction is a way to reduce the complexity of a model and avoid overfitting. Principal Component Analysis (PCA) algorithm is used to compress a dataset onto a lower-dimensional feature to reduce the complexity of the model.
When/How should I consider that my data set has many numbers of features and I should look for PCA for dimension reduction?