In my code, I managed to implement different vehicle types (I think) and to indicate the site-dependency. However, it seems that in the output of my optimization, vehicles can drive more then one route. I would like to implement that my vehicle, once it returns to the depot (node 0), that a new vehicle is assigned to perform another route. Could you help me with that? :)
I'm running on Python Jupyter notebook with the Docplex solver
all_units = [0,1,2,3,4,5,6,7,8,9]
ucp_raw_unit_data = {
"customer": all_units,
"loc_x": [40,45,45,42,42,42,40,40,38,38],
"loc_y" : [50,68,70,66,68,65,69,66,68,70],
"demand": [0,10,30,10,10,10,20,20,20,10],
"req_vehicle":[[0,1,2], [0], [0], [0],[0], [0], [0], [0], [0], [0]],
}
df_units = DataFrame(ucp_raw_unit_data, index=all_units)
# Display the 'df_units' Data Frame
df_units
Q = 50
N = list(df_units.customer[1:])
V = [0] + N
k = 15
# n.o. vehicles
K = range(1,k+1)
# vehicle 1 = type 1 vehicle 6 = type 2 and vehicle 11 = type 0
vehicle_types = {1:[1],2:[1],3:[1],4:[1],5:[2],6:[2],7:[2],8:[2],9:
[2],10:[2],11:[0],12:[0],13:[0],14:[0],15:[0]}
lf = 0.5
R = range(1,11)
# Create arcs and costs
A = [(i,j,k,r) for i in V for j in V for k in K for r in R if i!=j]
Y = [(k,r) for k in K for r in R]
c = {(i,j):np.hypot(df_units.loc_x[i]-df_units.loc_x[j],
df_units.loc_y[i]-df_units.loc_y[j]) for i,j,k,r in A}
from docplex.mp.model import Model
import docplex
mdl = Model('SDCVRP')
# decision variables
x = mdl.binary_var_dict(A, name = 'x')
u = mdl.continuous_var_dict(df_units.customer, ub = Q, name = 'u')
y = mdl.binary_var_dict(Y, name = 'y')
# objective function
mdl.minimize(mdl.sum(c[i,j]*x[i,j,k,r] for i,j,k,r in A))
#constraint 1 each node only visited once
mdl.add_constraints(mdl.sum(x[i,j,k,r] for k in K for r in R for j in V
if j != i and vehicle_types[k][0] in df_units.req_vehicle[j]) == 1 for i
in N)
##contraint 2 each node only exited once
mdl.add_constraints(mdl.sum(x[i,j,k, r] for k in K for r in R for i in V
if i != j and vehicle_types[k][0] in df_units.req_vehicle[j]) == 1 for j
in N )
##constraint 3 -- Vehicle type constraint (site-dependency)
mdl.add_constraints(mdl.sum(x[i,j,k,r] for k in K for r in R for i in V
if i != j and vehicle_types[k][0] not in
df_units.req_vehicle[j]) == 0 for j in N)
#Correcte constraint 4 -- Flow constraint
mdl.add_constraints((mdl.sum(x[i, j, k,r] for j in V if j != i) -
mdl.sum(x[j, i, k,r] for j in V if i != j)) == 0 for i in
N for k in K for r in R)
#constraint 5 -- Cumulative load of visited nodes
mdl.add_indicator_constraints([mdl.indicator_constraint(x[i,j,k,r],u[i] +
df_units.demand[j]==u[j]) for i,j,k,r in A if i!=0 and j!=0])
## constraint 6 -- one vehicle to one route
mdl.add_constraints(mdl.sum(y[k,r] for r in R) <= 1 for k in K)
mdl.add_indicator_constraints([mdl.indicator_constraint(x[i,j,k,r],y[k,r]
== 1) for i,j,k,r in A if i!=0 and j!=0])
##constraint 7 -- cumulative load must be equal or higher than demand in
this node
mdl.add_constraints(u[i] >=df_units.demand[i] for i in N)
##constraint 8 minimum load factor
mdl.add_indicator_constraints([mdl.indicator_constraint(x[j,0,k,r],u[j]
>= lf*Q) for j in N for k in K for r in R if j != 0])
mdl.parameters.timelimit = 15
solution = mdl.solve(log_output=True)
print(solution)
I expect every route to be visited with another vehicle, however the same vehicles perform multiple routes. Also, now the cumulative load is calculated for visited nodes, I would like to have this for the vehicle on the routes so that the last constraint (minimum load factor) can be performed.