2

my present array is given below:

 print(alldates)

Its output:

array([datetime.date(2019, 1, 25), datetime.date(2019, 1, 26),
       datetime.date(2019, 1, 27), datetime.date(2019, 1, 29),
       datetime.date(2019, 1, 31), datetime.date(2019, 2, 1)], dtype=object)

I want to convert it to something like this:

alldates = ['2019-01-25'.....,'2019-02-01']
Msquare
  • 775
  • 7
  • 17

3 Answers3

3

Use an .astype(str):

print(alldates.astype(str))

Which outputs:

['2019-01-25' '2019-01-26' '2019-01-27' '2019-01-29' '2019-01-31'
 '2019-02-01']
U13-Forward
  • 69,221
  • 14
  • 89
  • 114
  • Hi, could you take a look at this question https://stackoverflow.com/questions/70954791/identifying-statistical-outliers-with-pandas-groupby-and-reduce-rows-into-diffe – Aaditya Ura Feb 02 '22 at 11:33
0

you can use str() transfer to string and then append to new array

import datetime

alldates=[datetime.date(2019, 1, 25), datetime.date(2019, 1, 26),datetime.date(2019, 1, 27), datetime.date(2019, 1, 29),datetime.date(2019, 1, 31), datetime.date(2019, 2, 1)]

new_allldates = []
for item in alldates:
    new_allldates.append(str(item))

print(new_allldates)

Result:

['2019-01-25', '2019-01-26', '2019-01-27', '2019-01-29', '2019-01-31', '2019-02-01']

verejava
  • 7
  • 5
0

You can achieve the result by using below code,

datelist = [datetime.date(2019, 1, 25), datetime.date(2019, 1, 26),datetime.date(2019, 1, 27), datetime.date(2019, 1, 29),datetime.date(2019, 1, 31), datetime.date(2019, 2, 1)]

resultlist = [i.strftime('%d-%m-%Y') for i in datelist]

print(resultlist)

Result :

['25-01-2019', '26-01-2019', '27-01-2019', '29-01-2019', '31-01-2019', '01-02-2019']

Vicky
  • 819
  • 2
  • 13
  • 30