2

I am training a VGG16 for my custom image classification (with pretrained Imagenet weight) and transfer learning the last dense layer (since the output is binary classification vs 1000-class for Imagenet). Looking to train using a training set, I keep getting errors.

Here is my VGG16 code, with transfer learning.

from keras.models import Model
# note we exclude the final dense layers and add one back below, we would retrain it ourselves
base = VGG16(weights='imagenet', include_top=False, input_shape=(3,224,224)) 

# Freeze convolutional layers
for layer in base.layers:
    layer.trainable = False    

x = base.output
x = Flatten()(x) # flatten from convolution tensor output 
predictions = Dense(2, activation='softmax')(x) # should match # of classes predicted

# this is the model we will train
model = Model(inputs=base.input, outputs=predictions)

model.compile(optimizer=SGD(lr=0.0001, momentum=0.9),
            loss='categorical_crossentropy', metrics=['accuracy'])

Here is my model.fit code.

model.fit(X_train.as_matrix(),y_train.as_matrix())

training set was split using sklearn's train_test_split. Since X_train and y_train are pandas series, I turn them into ndarrays. When I do this, I get this error:

ValueError                                Traceback (most recent call last)
<ipython-input-74-6a40f048f921> in <module>()
----> 1 model.fit(X_train.as_matrix(),y_train.as_matrix())

~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
    950             sample_weight=sample_weight,
    951             class_weight=class_weight,
--> 952             batch_size=batch_size)
    953         # Prepare validation data.
    954         do_validation = False

~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/keras/engine/training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, check_array_lengths, batch_size)
    749             feed_input_shapes,
    750             check_batch_axis=False,  # Don't enforce the batch size.
--> 751             exception_prefix='input')
    752 
    753         if y is not None:

~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/keras/engine/training_utils.py in standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix)
    126                         ': expected ' + names[i] + ' to have ' +
    127                         str(len(shape)) + ' dimensions, but got array '
--> 128                         'with shape ' + str(data_shape))
    129                 if not check_batch_axis:
    130                     data_shape = data_shape[1:]

ValueError: Error when checking input: expected input_1 to have 4 dimensions, but got array with shape (4200, 1)

According to Keras' Model doc, X has to be a list of ndarrays (the dimension of each image is 1x3x244x244), and Y has to be a numpy array of target label. So I tried this:

model.fit(X_train.tolist,y_train.as_matrix())

But now I'm getting this error:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-113-783987041ff8> in <module>()
----> 1 model.fit(list(X_train),y_train)

~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
    950             sample_weight=sample_weight,
    951             class_weight=class_weight,
--> 952             batch_size=batch_size)
    953         # Prepare validation data.
    954         do_validation = False

~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/keras/engine/training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, check_array_lengths, batch_size)
    749             feed_input_shapes,
    750             check_batch_axis=False,  # Don't enforce the batch size.
--> 751             exception_prefix='input')
    752 
    753         if y is not None:

~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/keras/engine/training_utils.py in standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix)
    100                 'Expected to see ' + str(len(names)) + ' array(s), '
    101                 'but instead got the following list of ' +
--> 102                 str(len(data)) + ' arrays: ' + str(data)[:200] + '...')
    103         elif len(names) > 1:
    104             raise ValueError(

ValueError: Error when checking model input: the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 1 array(s), but instead got the following list of 4200 arrays: [array([[[[ 149.061    ,  151.061    ,  150.061    , ...,  151.061    ,
           150.061    ,  151.061    ],
         [ 150.061    ,  123.061    ,   90.061    , ...,   77.061    ,
           100.061...

my y_train has labels either 0 or 1, if that helps.

ysj
  • 65
  • 6

0 Answers0