This is reasonably standard in image processing, particularly in registration. However, it takes some thought and isn't "obvious". It wasn't obvious to me the first time either.
I'm assuming you have two images, in different "domains", in your case a source image in polar coordinates and a target image in Cartesian coordinates. I'm assuming you know the region in the target image you want to populate.
The commonly known best thing to do in image processing is to loop over coordinates in the known area of the target image that you want to populate. For each of these positions (x,y), you'll have some conversion to polar. It's probably r = sqrt(x*x+y*y)
and theta = atan2(y,x)
or something like that. Then you sample from that position in the polar coordinate position with interpolation.
Among choices of interpolation are:
- Nearest neighbor - you just round to the nearest
r
and theta
and choose the value of that.
- Bilinear -
- Bi-cubic
- ...
Of course you should take care of boundary conditions and what happens if your r
and theta
go out of your image.
This procedure also is similar (looping over the target image and sampling from the source image, and doing lookups based on the reverse transform) for all kinds of coordinates transformations. The nice thing is that you don't leave holes where your source imagine is relevant.
Hope this helps with the image part.
As for the mex part, here's some links:
Mex tutorial
Mex tutorial
Can you be more specific about what you need about the mex part?