I have 2 data frames (drug
and class
) which I need to join by last level of ATC classification code and also add 4 additional columns with corresponding parent levels.
I came up with 2 solutions, but first one is quite verbose and second one is using MS Access (which I want to avoid). Moreover in case I have more levels, the code would by muuuch verbose then this one. Is there any more elegant solution to this problem? How can I perform this kind of self join in R as I did in Access? I am quite begginer in R and SQL so little explanation will be appreciated :)
Sample Data info
drug
- cols: ID, ProductName, level5
- each row is one product (drug) with unique ID and level5 code of ATC classification (see Wiki-ATC)
class
- cols: classCode, className
classCode
contains all levels of ATC classification in the same column, level1-level5 of ATC- note: this table I can only read.
Short clarification about those classifications and levels
In drug$level5
we have Level5 classCode
s:
Level5 - A10BA02 (metformin). It is a member of level 4 - A10BA (biguanides), level 3 - A10B (antidiabetics, ex.insulins), level 2 - A10 (antidiabetics), level 1 - A (Alimentary tract and metabolism)
Each level is strictly defined by its length (L1 = 1char., L2 = 3chars., L3 = 4chars., L4 = 5chars., L5 = 7chars.)
| Level | Code | Name |
|---------|---------|---------------------------------|
| Level5* | A10BA02 | metformin |
| Level4 | A10BA | biguanides |
| Level3 | A10B | antidiabetics, ex. insulins |
| level2 | A10 | antidiabetics |
| Level1 | A | alimentary tract and metabolism |
Sample data
drug <- data.frame(ID = 1:5,
ProductName = c('ABC', 'CDE', 'FGH', 'IJK', 'LMN'),
level5 = c('A10BA02', 'C01BA02', 'C03CA01', 'C03CA03', 'C01BA02'),
stringsAsFactors = F)
class <- data.frame(code = c('A', 'A10', 'A10B', 'A10BA', 'A10BA02', 'C', 'C01', 'C01B', 'C01BA',
'C01BA02', 'C03', 'C03C', 'C03CA', 'C03CA01', 'C03CA03', 'C07', 'C07A',
'C07AA', 'C07AA03'),
className = c('Alimentary tract and metabolism',
'Antidiabetics', 'Antidiabetics, except insulins',
'Biguanides', 'Metformin', 'Cardiovascular system',
'Cardiacs', 'Antiarythmics, grp I and III',
'Antiarythmics, grp IA', 'Procainamide', 'Diuretics',
'Diuretics strong', 'Sulfonamides', 'Furosemide',
'Piretanide', 'Betablockers', 'Betablockers',
'Non-selective betablockers', 'Pindolol'),
stringsAsFactors = F)
# print
drug
head(class, 8)
Goal
I want to left join class
on drug
data frame with resulting df as follows:
Resulting table should have additional columns, each column for each Level from 1 to 5.
The goal is to create a filtering hierarchy where you first filter products by Level1, then Level2, and so on…
+----+-------------+-------------------------------------+---------------------+---------------------------------------+-------------------------------+------------------------+
| ID | ProductName | L1 | L2 | L3 | L4 | L5 |
+----+-------------+-------------------------------------+---------------------+---------------------------------------+-------------------------------+------------------------+
| 1 | ABC | A - Alimentary tract and metabolism | A10 - Antidiabetics | A10B - Antidiabetics, except insulins | A10BA - Biguanides | A10BA02 - Metformin |
+----+-------------+-------------------------------------+---------------------+---------------------------------------+-------------------------------+------------------------+
| 2 | CDE | C - Cardiovascular system | C01 - Cardiacs | C01B - Antiarythmics, grp I and III | C01BA - Antiarythmics, grp IA | C01BA02 - Procainamide |
+----+-------------+-------------------------------------+---------------------+---------------------------------------+-------------------------------+------------------------+
...
My dirty solution N.1 using R only
I came up with not pretty and quite verbose solution where I mutate drug$level5
with substr()
for each level. Then perform left_join()
and after unite()
columns.
library(tidyr)
library(dplyr)
sol1 <- drug %>%
mutate(level1 = substr(level5, 1, 1),
level2 = substr(level5, 1, 3),
level3 = substr(level5, 1, 4),
level4 = substr(level5, 1, 5)) %>%
left_join(class, by = c('level1' = 'code')) %>%
left_join(class, by = c('level2' = 'code')) %>%
left_join(class, by = c('level3' = 'code')) %>%
left_join(class, by = c('level4' = 'code')) %>%
left_join(class, by = c('level5' = 'code')) %>%
select(ID:level4,
level1name = className.x,
level2name = className.y,
level3name = className.x.x,
level4name = className.y.y,
level5name = className
) %>%
unite(L1, level1, level1name, sep = ' - ') %>%
unite(L2, level2, level2name, sep = ' - ') %>%
unite(L3, level3, level3name, sep = ' - ') %>%
unite(L4, level4, level4name, sep = ' - ') %>%
unite(L5, level5, level5name, sep = ' - ')
My solution N.2 using Access self join
Another solution was to reshape class
table in MS Access with self join
a create additional columns for each level and then simply left join this table on drug
df in R.
--- sqlReshapedTable
SELECT A.code AS L5,
A.className AS className,
L1.code + ' ' + L1.Name AS L1,
L2.code + ' ' + L2.Name AS L2,
L3.code + ' ' + L3.Name AS L3,
L4.code + ' ' + L4.Name AS L4
FROM
(((class AS A
INNER JOIN class AS L1 ON L1.code = LEFT(A.code, 1))
INNER JOIN class AS L2 ON L2.code = LEFT(A.code, 3))
INNER JOIN class AS L3 ON L3.code = LEFT(A.code, 4))
INNER JOIN class AS L4 ON L4.code = LEFT(A.code, 5);
sol2 <- drug %>%
left_join(sqlReshapedTable, by = c('level5' = 'Code'))
Thanks a lot for any help !