I will post my answer here since someone upvoted it.
Let's say you defined mean_iou
op in the following manner:
miou, update_op = tf.metrics.mean_iou(
predictions, labels, dataset.num_of_classes, weights=weights)
tf.summary.scalar(predictions_tag, miou)
If you see your graph in Tensorboard, you will find there is a node named 'mean_iou', and after expanding this node, you will find there is an op called 'total_confucion_matrix'. This is what you will need to calculate recall and precision for each class.

After you get the node name, you can add it to your tensorboard via tf.summary.text
or print in your terminal bytf.print
function. An example is posted below:
miou, update_op = tf.metrics.mean_iou(
predictions, labels, dataset.num_of_classes, weights=weights)
tf.summary.scalar(predictions_tag, miou)
# Get the correct tensor name of confusion matrix, different graphs may vary
confusion_matrix = tf.get_default_graph().get_tensor_by_name('mean_iou/total_confusion_matrix:0')
# Calculate precision and recall matrix
precision = confusion_matrix / tf.reshape(tf.reduce_sum(confusion_matrix, 1), [-1, 1])
recall = confusion_matrix / tf.reshape(tf.reduce_sum(confusion_matrix, 0), [-1, 1])
# Print precision, recall and miou in terminal
precision_op = tf.print("Precision:\n", precision,
output_stream=sys.stdout)
recall_op = tf.print("Recall:\n", recall,
output_stream=sys.stdout)
miou_op = tf.print("Miou:\n", miou,
output_stream=sys.stdout)
# Add precision and recall matrix in Tensorboard
tf.summary.text('recall_matrix', tf.dtypes.as_string(recall, precision=4))
tf.summary.text('precision_matrix', tf.dtypes.as_string(precision, precision=4))
# Create summary hooks
summary_op = tf.summary.merge_all()
summary_hook = tf.contrib.training.SummaryAtEndHook(
log_dir=FLAGS.eval_logdir, summary_op=summary_op)
precision_op_hook = tf.train.FinalOpsHook(precision_op)
recall_op_hook = tf.train.FinalOpsHook(recall_op)
miou_op_hook = tf.train.FinalOpsHook(miou_op)
hooks = [summary_hook, precision_op_hook, recall_op_hook, miou_op_hook]
num_eval_iters = None
if FLAGS.max_number_of_evaluations > 0:
num_eval_iters = FLAGS.max_number_of_evaluations
if FLAGS.quantize_delay_step >= 0:
tf.contrib.quantize.create_eval_graph()
tf.contrib.training.evaluate_repeatedly(
master=FLAGS.master,
checkpoint_dir=FLAGS.checkpoint_dir,
eval_ops=[update_op],
max_number_of_evaluations=num_eval_iters,
hooks=hooks,
eval_interval_secs=FLAGS.eval_interval_secs)
Then you will have your precision and recall matrix summarised in your Tensorboard:
