If there are three columns of data, the first column is some category id, the second column and the third column have some missing values, I want to aggregate the id of the first column, after grouping, fill in the third column of each group by the method: 'ffill' Missing value
I found a good idea here: Pandas: filling missing values by weighted average in each group! , but it didn't solve my problem because the output it produced was not what I wanted
Enter the following code to get an example:
import pandas as pd
import numpy as np
df = pd.DataFrame({'name': ['A','A', 'B','B','B','B', 'C','C','C'],'value': [1, np.nan, np.nan, 2, 3, 1, 3, np.nan, 3],
'sss':[1, np.nan, 3, np.nan, np.nan, np.nan, 2, np.nan, np.nan]})
Out[13]:
name value sss
0 A 1.0 1.0
1 A NaN NaN
2 B NaN 3.0
3 B 2.0 NaN
4 B 3.0 NaN
5 B 1.0 NaN
6 C 3.0 2.0
7 C NaN NaN
8 C 3.0 NaN
Fill in missing values with a previous value after grouping
Then I ran the following code, but it outputs strange results:
df["sss"] = df.groupby("name").transform(lambda x: x.fillna(axis = 0,method = 'ffill'))
df
Out[13]:
name value sss
0 A 1.0 1.0
1 A NaN 1.0
2 B NaN NaN
3 B 2.0 2.0
4 B 3.0 3.0
5 B 1.0 1.0
6 C 3.0 3.0
7 C NaN 3.0
8 C 3.0 3.0
The result I want is this:
Out[13]:
name value sss
0 A 1.0 1.0
1 A NaN 1.0
2 B NaN 3.0
3 B 2.0 3.0
4 B 3.0 3.0
5 B 1.0 3.0
6 C 3.0 2.0
7 C NaN 2.0
8 C 3.0 2.0
Can someone point out where I am wrong?strong text