I am working to setup data for an unsupervised learning algorithm. The goal of the project is to group (cluster) different customers together based on their behavior on the website. Obviously, some sort of clustering algorithm is best for discovering patterns in the data we can't see as humans.
However, the database contains multiple rows for each customer (in chronological order) for each action the customer took on the website for that visit. For example customer with ID# 123 clicked on page 1 at time X and that would be a row in the database, and then the same customer clicked another page at time Y. That would make another row in the database.
My question is what algorithm or approach would you use for clustering in this given scenario? K-means is really popular for this type of problem, but I don't know if it's possible to use in this situation because of the grouping. Is it somehow possible to do cluster analysis around one specific ID that includes multiple rows?
Any help/direction of unsupervised learning I should take is appreciated.