I am currently designing a NoisyNet in Tensorflow, for which I need to define a custom layer. When copying a model containing that custom layer, python raises the error ValueError: Unknown layer: NoisyLayer
. The implementation of the layer is provided here.
The goal is to copy one network creating a second instance of it. For that purpose, I use the command net_copy = copy.deepcopy(net_original)
, which works as long as I don't include the custom layer referred to above in the model to be copied.
I saw that for saving and loading there exists a way of specifying custom attributes (such as custom layers), but yet I couldn't find a similar command that would work for copy.deepcopy()
, where copy is imported via import copy
.
I am using Tensorflow 1.12.0 in Python3.
Again, the custom layer is provided under the link above. The network that uses the custom layer looks as follows:
class Network:
def __init__(self, actionspace_size, learning_rate, gradient_momentum, gradient_min):
frames_input = keras.layers.Input((84, 84, 4))
actions_input = keras.layers.Input((actionspace_size,))
conv1 = keras.layers.Conv2D(16, (8, 8), strides=(4, 4), activation="relu")(frames_input)
conv2 = keras.layers.Conv2D(32, (4, 4), strides=(2, 2), activation="relu")(conv1)
flattened = keras.layers.Flatten()(conv2)
# NoisyNet
hidden = NoisyLayer(activation=tf.nn.relu)(inputs=flattened, resample_noise_flag=True)
output = NoisyLayer(in_shape=(1,256), out_units=actionspace_size)(inputs=hidden, resample_noise_flag=True)
filtered_output = keras.layers.merge.Multiply()([output, actions_input])
self.model = keras.models.Model(inputs=[frames_input, actions_input], outputs=filtered_output)
self.model.compile(loss='mse', optimizer=keras.optimizers.RMSprop(lr=learning_rate, rho=gradient_momentum, epsilon=gradient_min))
When calling
q_net = Network(actionspace_size, learning_rate, gradient_momentum, gradient_min).
target_net = copy.deepcopy(q_net)
the following error arises:
Traceback (most recent call last):
File "DQN_tf_NoisyNet.py", line 315, in <module>
main()
File "DQN_tf_NoisyNet.py", line 252, in main
target_net = copy.deepcopy(q_net)
File "/usr/lib/python3.5/copy.py", line 182, in deepcopy
y = _reconstruct(x, rv, 1, memo)
File "/usr/lib/python3.5/copy.py", line 299, in _reconstruct
y.__setstate__(state)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/network.py", line 1266, in __setstate__
model = saving.unpickle_model(state)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/saving.py", line 435, in unpickle_model
return _deserialize_model(f)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/saving.py", line 225, in _deserialize_model
model = model_from_config(model_config, custom_objects=custom_objects)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/saving.py", line 458, in model_from_config
return deserialize(config, custom_objects=custom_objects)
File "/usr/local/lib/python3.5/dist-packages/keras/layers/__init__.py", line 55, in deserialize
printable_module_name='layer')
File "/usr/local/lib/python3.5/dist-packages/keras/utils/generic_utils.py", line 145, in deserialize_keras_object
list(custom_objects.items())))
File "/usr/local/lib/python3.5/dist-packages/keras/engine/network.py", line 1022, in from_config
process_layer(layer_data)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/network.py", line 1008, in process_layer
custom_objects=custom_objects)
File "/usr/local/lib/python3.5/dist-packages/keras/layers/__init__.py", line 55, in deserialize
printable_module_name='layer')
File "/usr/local/lib/python3.5/dist-packages/keras/utils/generic_utils.py", line 138, in deserialize_keras_object
': ' + class_name)
ValueError: Unknown layer: NoisyLayer
I know that the network itself is not the problem (neither the deepcopy approach), since both work fine again as soon as I replace the NoisyLayers (custom) by standard dense layers.
Does anyone know how to copy a Tensorflow model including custom layers? Thanks in advance!