First, you are confusing two very different things, attributes and entity types. Briefly, entity types are used to describe the real world entities that are modelled in a database schema. Attributes describe facts about such entities. For instance an entity type Person could have as attributes Family Name, Date of Birth, etc.
So the question is how to compute the closure of a set of attributes. You can apply the Armstrong’s axioms, trying at each step to apply one of them, until possible, but you can also simplify the computation by using the following, very simple, algorithm (and if you google "algorithm closure set attributes" you find a lot of descriptions of it):
We want to find X+, the closure of the set of attributes X.
To find it, first assign X to X+.
Then repeat the following while X+ changes:
If there is a functional dependency W → V such as W ⊆ X+ and V ⊈ X+,
unite V to X+.
So in your case, given:
AB → C
BE → I
E → C
CI → D
to compute BE+ we can procede in this way:
1. BE+ = BE
2. BE+ = BEI (because of BE → I)
3. BE+ = BEIC (because of E → C)
4. BE+ = BEICD (because of CI → D)
No other dependency can be used to modify BE+, so the algorithm terminates and the result is BCDEI. In terms of Armstrong’ axioms, the step 1 is due to Reflexivity, while the steps 2 to 4 are due to a combination of Transitivity and Augmentation.