I want to estimate a fixed effects model while using panel-corrected standard errors as well as Prais-Winsten (AR1) transformation in order to solve panel heteroscedasticity, contemporaneous spatial correlation and autocorrelation.
I have time-series cross-section data and want to perform regression analysis. I was able to estimate a fixed effects model, panel corrected standard errors and Prais-winsten estimates individually. And I was able to include panel corrected standard errors in a fixed effects model. But I want them all at once.
# Basic ols model
ols1 <- lm(y ~ x1 + x2, data = data)
summary(ols1)
# Fixed effects model
library('plm')
plm1 <- plm(y ~ x1 + x2, data = data, model = 'within')
summary(plm1)
# Panel Corrected Standard Errors
library(pcse)
lm.pcse1 <- pcse(ols1, groupN = Country, groupT = Time)
summary(lm.pcse1)
# Prais-Winsten estimates
library(prais)
prais1 <- prais_winsten(y ~ x1 + x2, data = data)
summary(prais1)
# Combination of Fixed effects and Panel Corrected Standard Errors
ols.fe <- lm(y ~ x1 + x2 + factor(Country) - 1, data = data)
pcse.fe <- pcse(ols.fe, groupN = Country, groupT = Time)
summary(pcse.fe)
In the Stata command: xtpcse it is possible to include both panel corrected standard errors and Prais-Winsten corrected estimates, with something allong the following code:
xtpcse y x x x i.cc, c(ar1)
I would like to achieve this in R as well.