There are quite a fiew issues with; at very first, I'll be dropping all those totally needless parentheses, they just make the code (much) harder to read:
float* calculateZeros(float p, float q)
{
float *x1, *x2; // pointers are never initialized!!!
if ((p / 2)*(p / 2) - q < 0)
throw std::exception("No Zeros!"); // zeros? q just needs to be large enough!
x1 *= -(p / 2) + sqrt(static_cast<double>((p / 2)*(p / 2) - q);
x2 *= -(p / 2) - sqrt(static_cast<double>((p / 2)*(p / 2) - q);
// ^ this would multiply the pointer values! but these are not initialized -> UB!!!
float returnValue[1];
returnValue[0] = x1; // you are assigning pointer to value here
returnValue[1] = x2;
return x1 != x2 ? returnValue[0] : x1;
// ^ value! ^ pointer!
// apart from, if you returned a pointer to returnValue array, then you would
// return a pointer to data with scope local to the function – i. e. the array
// is destroyed upon leaving the function, thus the pointer returned will get
// INVALID as soon as the function is exited; using it would again result in UB!
}
As is, your code wouldn't even compile...
As I see C++ doesn't support arrays
Well... I assume you meant: 'arrays as return values or function parameters'. That's true for raw arrays, these can only be passed as pointers. But you can accept structs and classes as parameters or use them as return values. You want to return both calculated values? So you could use e. g. std::array<float, 2>
; std::array
is a wrapper around raw arrays avoiding all the hassle you have with the latter... As there are exactly two values, you could use std::pair<float, float>
, too, or std::tuple<float, float>
.
Want to be able to return either 2, 1 or 0 values? std::vector<float>
might be your choice...
std::vector<float> calculateZeros(float p, float q)
{
std::vector<float> results;
// don't repeat the code all the time...
double h = static_cast<double>(p) / 2; // "half"
s = h * h; // "square" (of half)
if(/* s greater than or equal q */)
{
// only enter, if we CAN have a result otherwise, the vector remains empty
// this is far better behaviour than the exception
double r = sqrt(s - q); // "root"
h = -h;
if(/* r equals 0*/)
{
results.push_back(h);
}
else
{
results.reserve(2); // prevents re-allocations;
// admitted, for just two values, we could live with...
results.push_back(h + r);
results.push_back(h - r);
}
}
return results;
}
Now there's one final issue left: as precision even of double is limited, rounding errors can occur (and the matter is even worth if using float; I would recommend making all floats to doubles, parameters and return values as well!). You shouldn't ever compare for exact equality (someValue
== 0.0), but consider some epsilon to cover badly rounded values:
-epsilon < someValue && someValue < +epsilon
Ok, in given case, there are two originally exact comparisons involved, we might want to do as little epsilon-comparisons as possible. So:
double d = r - s;
if(d > -epsilon)
{
// considered 0 or greater than
h = -h;
if(d < +epsilon)
{
// considered 0 (and then no need to calculate the root at all...)
results.push_back(h);
}
else
{
// considered greater 0
double r = sqrt(d);
results.push_back(h - r);
results.push_back(h + r);
}
}
Value of epsilon? Well, either use a fix, small enough value or calculate it dynamically based on the smaller of the two values (multiply some small factor to) – and be sure to have it positive... You might be interested in a bit more of information on the matter. You don't have to care about not being C++ – the issue is the same for all languages using IEEE754 representation for doubles.