I compared the silhouette widths of different cluster algorithms on the same dataset: k-means, clara and pam. I can see which one scores the highest on silhouette width. But can I now statistically test whether the solutions differ from each other kind of as we normally do with ANOVA?
I formulated the hypothesis for my thesis that clara and pam would give more valid results than k-means. I know the silhouette width of both of them is higher, but I don't know how I can statistically confirm/disconfirm my hypothesis.
#######4: Behavioral Clustering
##4.1 Kmeans
kmeans.res.4.1 <- kmeans(ClusterDFSBeha, 2)
print(kmeans.res.4.1)
#Calculate SW
library(clValid)
intern4.1 <- clValid(ClusterDFSBeha, 2, clMethods="kmeans",validation="internal", maxitems = 9800)
summary(intern4.1)
#Silhouette width = 0.7861
##4.2 PAM
pam.res.4.2 <- pam(ClusterDFSBeha, 2)
print(pam.res.4.2)
intern4.2 <- clValid(ClusterDFSBeha, 2, clMethods="pam", validation="internal", maxitems = 9800)
summary(intern4.2)
#Silhouette width = 0.6702
##4.3 Clara
clara.res.4.3 <- clara(ClusterDFSBeha,2)
print(clara.res.4.3)
intern4.3 <- clValid(ClusterDFSBeha, 2, clMethods="clara", validation="internal", maxitems = 9800)
summary(intern4.3)
#Silhouette width = 0.8756
Now I would like to statistically assess whether the methods statistically 'differ' from each other to be able to reject or approve my hypothesis with a certain p level.